Первый закон ньютона. Масса. Сила. Первый закон Ньютона (закон инерции). Инерциальные системы отсчета

При движении тела его скорость может изменяться по модулю и направлению. Это означает, что тело двигается с некоторым ускорением . В кинематике не ставится вопрос о физической причине, вызвавшей ускорение движения тела. Как показывает опыт, любое изменение скорости тела возникает под влиянием других тел. Динамика рассматривает действие одних тел на другие как причину, определяющую характер движения тел.

Взаимодействием тел принято называть взаимное влияние тел на движение каждого из них.

Раздел механики, изучающий законы взаимодействия тел, называется динамикой.

Законы динамики были открыты в 1687 г. великим ученым Исааком Ньютоном. Сформулированные им закона динамики лежат в основе так называемой классической механики. Законы Ньютона следует рассматривать как обобщение опытных фактов. Выводы классической механики справедливы только при движении тел с малыми скоростями, значительно меньшими скорости света c .

Самой простой механической системой является изолированное тело , на которое не действуют никакие тела. Так как движение и покой относительны, в различных системах отсчета движение изолированного тела будет разным. В одной системе отсчета тело может находиться в покое или двигаться с постоянной скоростью, в другой системе это же тело может двигаться с ускорением.

Первый закон Ньютона (или закон инерции ) из всего многообразия систем отсчета выделяет класс так называемых инерциальных систем .

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией . Поэтому первый закон Ньютона называют законом инерции .

Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

При описании движения тел вблизи поверхности Земли системы отсчета, связанные с Землей, приближенно можно считать инерциальными. Однако, при повышении точности экспериментов, обнаруживаются отклонения от закона инерции, обусловленные вращением Земли вокруг своей оси.

Примером тонкого механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко относительно Земли оставалась бы неизменной. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1.7.1).

С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Эту систему использовал Ньютон при формулировании закона всемирного тяготения (1682 г.).

Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, - тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы (см 1.2).

Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины - инертную массу тела и силу .

Масса - это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях - значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

В этом соотношении величины и следует рассматривать как проекции векторов и на ось OX (рис. 1.7.2). Знак «минус» в правой части формулы означает, что ускорения взаимодействующих тел направлены в противоположные стороны.

В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг) .

Масса любого тела может быть определена на опыте путем сравнения с массой эталона (m эт = 1 кг). Пусть m 1 = m эт = 1 кг. Тогда

Масса тела - скалярная величина . Опыт показывает, что если два тела с массами m 1 и m 2 соединить в одно, то масса m составного тела оказывается равной сумме масс m 1 и m 2 этих тел:

M=m 1 +m 2

Это свойство масс называют аддитивностью .

Сила - это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной, имеет модуль, направление и точку приложения .

Векторная сумма всех сил, действующих на тело, называется равнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ней тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Рисунок 1.7.3.

В качестве первого закона Ньютон взял принцип инерции Галилея (1632 год) и дополнил его понятием инерциальной системы отсчета. Согласно принципу инерции Галилея свободное тело сохраняет состояние, покоя или равномерного, прямолинейного движения пока воздействие других тел не выведет его из этого состояния.

Из этого принципа следует, что состояние покоя или равномерного прямолинейного движения не требует для своего поддержания каких-либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое инерцией . Поэтому первый закон Ньютона называют законом инерции, а движение тела в отсутствие воздействий со стороны других тел - движением по инерции.

Первый закон Ньютона выполняется не во всех системах отсчета. Те системы, в которых он выполняется, называются инерциальными системами отсчета.

Экспериментально установлено, что практически инерциальной системой отсчета является гелиоцентрическая система отсчета, начало координат которой находится в центре Солнца, а оси проведены в направлении трех удаленных звезд, выбранных, например, так, чтобы они были взаимно перпендикулярны.

Для многих практических целей при движении макроскопических тел в качестве системы отсчета используется система, связанная с Землей. Такая система отсчета считается приближенно инерциальной из-за влияния суточного и годового вращения Земли.

Таким образом, можно дать следующую формулировку первого закона Ньютона: существуют такие системы отсчета, в которых тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие других тел не выведет его из этого состояния.

Покажем, что любая система от­счета, которая движется равномерно и прямолинейно относительно инерциальной системы, также является инерциальной. Пусть тело А покоится в инерциальной системе отсчета К (рис. 3.1). Система отсчета К" движется относительно системы К равномерно и прямолинейно со скоростью. Тело А относительно системы К" движется равномерно и прямолинейно со скоростью -, что также удовлетворяет первому закону Ньютона. Следовательно, система отсчета К" является инерциальной. Таким образом, по известной одной инерциальной системе отсчета можно описанным выше способом построить их сколько угодно.

3.1.2. Второй закон Ньютона

Этот закон является основным законом динамики материальной точки и твердого тела, движущегося поступательно.

Закон устанавливает связь между силой, массой и ускорением.

Опыт показывает, что всякое изменение величины или направления скорости движения тела вызывается его взаимодействием с другими телами.

В механике сила определятся как количественная мера взаимодействия тел, которое приводит к изменению их скорости или деформации.

Сила характеризуется величиной, направлением и точкой приложения. Следовательно, сила является векторной величиной.

По современным представлениям, основанным на опыте, все наблюдаемые в природе взаимодействия могут быть сведены к четырем фундаментальным: гравитационному, слабому, электромагнитному и сильному.

Гравитационное взаимодействие присуще всем материальным объектам. Оно определяется наличием у материальных тел массы и подчиняется закону всемирного тяготения Ньютона. Радиус действия гравитационного взаимодействия неограничен. В области микромира роль гравитационного взаимодействия ничтожно мала.

Слабое взаимодействие - короткодействующее, существует в микромире и проявляется в том, что приводит к определенному виду нестабильности элементарных частиц.

Электромагнитное взаимодействие проявляется при взаимодействии токов и зарядов. Радиус действия электромагнитного взаимодействия неограничен. Оно является определяющим в образовании атомов, молекул и макроскопических тел.

Ядерное или сильное взаимодействие является самым интенсивным. Радиус сильного взаимодействия очень мал ~10 -15 м. Благодаря этому взаимодействию протоны и нейтроны удерживаются в ядрах, несмотря на сильное отталкивание протонов.

К нефундаментальным силам относятся силы упругости, трения, сопротивления и другие. Все эти силы могут быть сведены к электромагнитным или гравитационным, однако, это приводит к существенному усложнению решения задач механики. По этой причине в механике силы упругости и трения рассматривают наряду с фундаментальными.

Опытным путем установлено еще одно важное свойство сил, проявляющееся при механическом взаимодействии. Силы в механике подчиняются принципу суперпозиции , который заключается в следующем: одновременное взаимодействие частицы М с несколькими другими n частицами с силами
эквивалентно действию одной силы, равной их векторной сумме.

. (3.1)

Силу называют равнодействующей.

Как показывает опыт, все тела обладают свойством препятствовать изменению величины и направления скорости. Это свойство называется инертностью.

Массу можно определить двумя способами. Первый из них состоит в следующем. Выбирается эталонное тело, масса которого m эт принимается за единицу массы. Масса m исследуемого тела определяется из следующего соотношения, установленного опытным путем:

,

где а и а эт - ускорения, вызываемые действием одной и той же силы на эталонное и исследуемое тела. При этом определяется так называемая инертная масса.

Второй способ основан на использовании закона всемирного тяготения. При этом определяется так называемая гравитационная масса.

А. Эйнштейн сформулировал принцип эквивалентности гравитационной и инертной массы: инертная и гравитационная массы одного и того же тела одинаковы.

Эквивалентность инертной и гравитационной масс позволяет выбрать для них одну единицу измерения. В качестве единицы массы в системе СИ принят килограмм (кг) - масса эталонного платиново-иридиевого тела, хранящегося во Франции в международном бюро мер и весов.

Динамическое воздействие движущегося тела на другие тела зависит от скорости и массы. Поэтому в качестве динамической характеристики интенсивности движения вводится векторная величина , называемая импульсом (или количеством движения) тела и равная произведению его массы на скорость:

. (3.2)

Единица импульса килограмм-метр, деленный на секунду (кг·м/с).

Согласно второму закону Ньютона, производная по времени от импульса тела равна равнодействующей всех приложенных к нему сил:

. (3.3)

Из (3.3) следует, что изменение импульса происходит в направлении равнодействующей силы . Отметим, что второй закон Ньютона в форме (3.3) допускает описание движения тела с переменной массой. Если масса тела постоянна, то из (3.2) и (3.3) получаем уравнение второго закона Ньютона в виде

, (3.4)

откуда с учетом формулы (2.21) получаем:

. (3.5)

Единица силы в СИ является производной единицей, определение которой основано на формуле (3.5). Единица силы - 1 Ньютон (Н), это такая сила, которая телу с массой 1 кг сообщает ускорение 1м / с 2 .

Второй закон Ньютона часто называют основным законом динамики поступательного движения. С помощью этого закона в механике решаются две основные задачи:

1. Прямая основная задача - установление дифференциальных уравнений движения тела (точки) и их решение.

2. Обратная основная задача - нахождение зависимости сил взаимодействия тел от их координат, скоростей и времени, то есть установление законов взаимодействия.

1. За первый закон движения Ньютон принял закон инерции, высказанный в частной форме еще Галилеем. Согласно этому закону тело, не подверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным.

Свободных тел не существует. Поэтому они являются физическими абстракциями. Однако можно поставить тело в такие условия, когда внешние воздействия на него по возможности устранены или практически компенсируют друг друга. Представив, что эти воздействия беспредельно уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.

2. Закон инерции не может быть справедлив во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система называется инерциальной системой отсчета. Таким образом, содержание закона инерции сводится к утверждению, что существует по крайней мере одна инерциальная система отсчета.

3. Земная система отсчета не может быть точно инерциальной, так как Земля испытывает два вращательных движения: вокруг собственной оси и вокруг Солнца. Однако эти движения происходят относительно медленно и для множества движений можно считать, что земная система отсчета инерциальна. Нужны специальные опыты, чтобы вскрыть ее инерциальность.

Гелиоцентрическая система отсчета, оси в которой направлены на почти неподвижные удаленные звезды, еще лучше удовлетворяет требованию инерциальности. В этой системе можно изучать движение тел, малых по сравнению с размерами Галактики.

4. То есть, если существует класс движений, который мы желаем изучать, то всегда можно построить систему отсчета, которая будет инерциальной для данного класса движений.

6 Масса. Импульс. Второй закон Ньютона. Сила .

1. Всякое тело оказывает сопротивление при попытках привести его в движение или изменить модуль или направление его скорости. Это свойство называется инертностью. У разных тел оно проявляется в разной степени. Мера инертности называется массой.

Для сравнения масс можно применить закон сохранения импульса, который будет сформулирован позднее. Из этого закона можно найти отношение масс. Для перехода от отношения масс к массам как таковым, необходимо выбрать эталон массы.

2. За эталон выбрана масса международного эталона килограмма , хранящегося в Международном бюро мер и весов (расположено в г. Севр близ Парижа) и представляющего собой цилиндр диаметром и высотой 39.17 мм из платино-иридиевого сплава (90 % платины, 10 % иридия). Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.

3. Для формулировки второго закона Ньютона введем понятие импульса. Импульсом или количеством движения МТ называется вектор, равный произведению массы точки на ее скорость:

Импульсом или количеством движения системы материальных точек назовем сумму импульсов отдельных материальных точек:

Эти формулы годятся для медленных движений (). В случае скоростей, близких к скорости света, формула для импульса МТ должна быть изменена.

4. Для формулировки второго закона Ньютона надо ввести понятие силы. Силой в механике считают всякую причину, изменяющую импульс тела. Это качественное определение.

Количественное определение: в инерциальной системе отсчета производная импульса МТ по времени представляется уравнением:

Отсюда, второй закон Ньютона: в инерциальной системе отсчета производная импульса МТ по времени равна действующей на нее силе. Для медленных движений и постоянной массе эту формулу можно представить в виде:

Здесь однозначно определяется свойствами рассматриваемой МТ и окружающих ее тел, а также положениями и скоростями этих тел относительно МТ. Величина называется слой, действующей на рассматриваемую МТ. В частных случаях сила может определяться только положением или только одной ее скоростью, но не может явно зависеть от ускорения этой точки. Из закона следует, что сила – вектор, и сложение сил подчиняется правилу параллелограмма.

Это уравнение не есть способ определения силы. Силы должны определятся как-нибудь по-другому. Например, с помощью динамометра. Подробности в учебнике.

3. Рассмотрим соотношение между первым и вторым законами Ньютона. Если положить , то получится . Отсюда следует, что , т.е. импульс, а с ним и скорость свободно движущейся МТ постоянны. Таким образом, формально первый закон Ньютона следует из второго. Однако формула, определяющая второй закон Ньютона, имеет смысл только в инерциальных системах отсчета, а для введения таких систем требуется отдельный, первый закон Ньютона.

4. Второй закон Ньютона позволяет ввести единицу силы. В системе СИ такая единица называется ньютон (Н). Один ньютон = эта сила, которая массе в 1 кг сообщает ускорение в 1 м/с 2 .Есть другая система, очень любимая физиками, СГС (сантиметр (см), грамм (г), секунда (с)). В этой системе единица силы называется дина (дин).

7 Третий закон Ньютона. Формулирование задачи движения материальных точек. Начальные условия.

Рассмотрим замкнутую систему, состоящую из двух взаимодействующих МТ. В этом случае справедлив закон сохранения импульса

Дифференцируя это уравнение по времени и использовав второй закон Ньютона, получим:

.

Где и - силы, с которыми рассматриваемые МТ действуют друг на друга. Привлечем опытный факт, согласно которому силы и направлены вдоль прямой, соединяющей взаимодействующие точки. Тогда мы приходим к третьему закону Ньютона:

Силы взаимодействия двух материальных точек равны по величине, противоположно направлены и действуют вдоль прямой, соединяющей эти материальные точки.

2. Аналогично, можно сформулировать третий закон Ньютона, если МТ много. Для этого рассматриваются отдельно силы взаимодействия отдельных точек друг с другом. Пусть - сила, с которой i -я точка действует на k -ю, - сила, с которой k -я точка действует на i -ю. Третий закон утверждает, что обе эти силы направлены вдоль прямой, соединяющей взаимодействующие точки, причем .

3. Векторное уравнение движения МТ можно записать в координатной форме:

То есть получили три дифференциальных уравнения. Для их решения необходимо задать либо две векторные, либо шесть числовых постоянных. Обычно берут значения радиус-вектора и скорости в момент времени . Их называют начальными условиями.

Пример. Движение в поле силы тяжести.

Галилеем было установлено, что все тела в пустоте вблизи Земли падают с одинаковым ускорением. Сила тяжести выражается формулой , и уравнение движения переходит в

.

Простым дифференцированием можно убедиться, что это уравнение имеет общее решение:

при произвольных значениях постоянных векторов и . Эти два вектора должны быть заданы при .

4. Для системы из материальных точек необходимо задать начальный радиус-вектор и начальная скорость, т.е. всего векторов или чисел, определяющих начальные значения координат и скоростей материальных точек системы.

Силы в механике. Гравитационные силы. Закон всемирного тяготения. Принцип суперпозиции. Факты, подтверждающие закон всемирного тяготения. Сила упругости. Закон Гука. Сила трения. Сухое трение. Трение покоя. Трение скольжения.

1. Взаимодействие тел может происходить либо при непосредственном соприкосновении, либо на расстоянии. В первом случае взаимодействующие тела тянут или толкают друг друга. Возникающие при этом силы обычно вызываются деформациями тел. Если деформации малы, то от них можно отвлечься, учтя их влияние введением сил натяжения и давления.

2. Помимо сил, действующих при соприкосновении тел, в природе существуют силы, которые действуют на расстоянии, без участия промежуточной среды. К таким силам относятся гравитационные силы и силы взаимодействия наэлектризованных и намагниченных тел.

3. Согласно основным представлениям механики Ньютона силы, действующие на всякое тело в какой-либо момент времени, зависят от положения и скоростей остальных тел в тот же самый момент времени. Такое представление приводит к бесконечно большой скорости передачи взаимодействий. Опытные же факты привели к заключению, что скорость передачи взаимодействий ограничена скоростью света в вакууме. Отсюда сразу следует, что третий закон Ньютона не выполняется для взаимодействий на расстоянии. Физики нашли выход из этого. Они введи понятие поля. Тело возбуждают в окружающем пространстве силовое поле, которое в месте нахождения тела проявляется в виде действующих на него сил. И обратно. Взаимодействия прикосновением являются частными случаями полевого взаимодействия - через молекулярные поля.

4. Сила упругости.

Силами упругости называются силы, возникающие при деформации тел, то есть при изменении их формы и размеров. При этом изменяются расстояния между молекулами внутри тела, и электромагнитные силы пытаются вернуть молекулы обратно. Если после прекращения действия силы, вызвавшей деформацию, тело принимает первоначальную форму и размеры, то деформация называется упругой.

Простейшими деформациями являются деформации растяжения и сжатия. Они описываются законом Гука при малых упругих деформациях.

На рисунке рассмотрен случай растяжения. Сила, вызывающая растяжения стержня обозначена . Равная ей по величине и противоположно направленная возвращающая сила выражается через экспериментальный закон Гука :

.

Здесь - размер, на который увеличилась длина стержня, а называется коэффициентом жесткости стержня. Знак минус указывает на то, что сила направлена в сторону, обратную изменения длины стержня. Если разделить силу на площадь сечения стержня , а удлинение на первоначальную длину стержня , то закон Гука преобразуется к виду:

.

Здесь называется модулем Юнга и зависит только от вещества стержня. Для конкретного стержня величина выражается из формулы

.

Аналогично представляется другая деформация - сдвига. Ее мы рассматривать не будем. Все малые деформации сводятся к деформациям растяжения и сдвига.

5. Гравитационная сила. Сила тяжести.

> Первый закон Ньютона: инерция

Первый закон Ньютона и инерция . Изучите основы механики Ньютона, момент инерции движения в физике, формулировка и формула первого закона, инерциальная система.

Первый закон движения Ньютона концентрируется на инерции. Тело в состоянии покоя будет оставаться стабильным, а смещающийся объект продолжит движение.

Задача обучения

  • Разобраться в Первом законе движения.

Основные пункты

  • Три закона физики Ньютона составляют основу механики.
  • Первый закон гласит: тело в состоянии покоя останется стабильным, пока на него не повлияет внешняя сила, также и движущееся тело останется в движении, пока не почувствует внешнее воздействие.
  • Чистая внешняя сила – сумма всех факторов, влияющих на объект.
  • Наличие воздействующих сил не означает присутствие чистой внешней силы. Одинаковые по величине силы, но действующие в противоположных направлениях, могут отменить друг друга.
  • Трение – сила между перемещающимся телом и поверхностью. Это внешняя сила, влияющая на замедление.
  • Инерция – тенденция тела в движении продолжать двигаться. Зависит от массы, поэтому чем тяжелее тело, тем сложнее изменить направление движения.

Термины

  • Инертность – свойство объекта, которое вступает в сопротивление с любой трансформацией текущего положения (эквивалентно массе).
  • Равномерное движение – перемещение с неизменной скоростью.
  • Трение – сила, сопротивляющаяся относительному движению.

История

Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона гласят:

Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.

Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.

Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы одинаковы по величине и противоположны по направлению.

Первый закон движения

Итак, тело пребывает в движении или покое, пока на него не воздействует внешняя сила. То есть, движущееся тело сохранит свою скорость, если на него ничего не влияет. Это именуют равномерным движением.

Примеры

Давайте разберем Первый закон Ньютона в конкретной системе отсчета. Представьте, что вы едете на коньках в инерциальной системе. Если оттолкнетесь от одного борта, то по Первому закону Ньютона должны прибыть ко второму. Но этого не случится. Не забывайте, что движение продолжается, если на него не влияет внешняя сила. В нашем мире этой силой чаще всего выступает трение. В данном случае – трение между коньками и льдом.

А как насчет ремней безопасности? В случае автомобильной аварии, они должны защитить нас. Допустим, машина едет со скоростью 60 миль/ч. Если резко затормозить, то машина ощущает внешнюю силу и замедляется. Но на водителя это не действует, поэтому он продолжит перемещаться на прежней скорости. Ремень создает противовес и тормозит человека.

Инертность

Иногда этот закон именуют законом инерции или инерциальной системой отсчета. Она выступает свойством тела фиксироваться в состоянии покоя или смещения (с постоянной скоростью). У некоторых инерция больше, потому что эквивалентна массе. Поэтому сложнее изменить направление валуна, чем шарика для гольфа.

ЛЕКЦИЯ 1.2.

Динамика материальной точки. Границы применимости классической механики. Как мы уже отмечали, кинематика дает описание движения тел без анализа причин, вызвавших это движение. Динамика изучает движение тел в связи с теми причинами (носящими характер взаимодействия между телами), которые обусловливают то или иной характер движения.

В основе так называемой классической или иначе ньютоновской механики лежат три закона динамики, сформулированные Ньютоном в 1687 г. Эти законы явились результатом обобщения большого количества опытных данных. Правильность законов подтверждается большим количеством подтвержденных на практике следствий из них, а также огромным количеством машин, механизмов и устройств, принцип работы которых базируется на этих законах.

Следует, однако, отметить, что имеются определенные ограничения на применение этих законов. Развитие теории относительности и ее специального раздела – релятивистской механики (механики больших скоростей), а также квантовой механики показало, что законы классической механики с достаточной для практики точностью описывают поведение объектов, если их размеры и масса значительно превосходят массы и размеры атомов, а скорость движения существенно меньше скорости света.

Первый закон Ньютона (другое название – закон инерции) формулируется следующим образом: всякое тело находится в состоянии покоя или прямолинейного равномерного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние .

Закон инерции выполняется не во всякой системе отсчета. Системы отсчета, в которых этот закон выполняется, называются инерциальными . Те системы отсчета, в которых первый закон Ньютона не выполняется, называются неинерциальными . Установленный Ньютоном закон инерции сам по себе подразумевает наличие в природе инерциальных систем отсчета. С достаточной для практики точностью инерциальной можно считать систему отсчета, центр которой совмещен с Солнцем. Такая система отсчета называется гелиоцентрической . Отметим также, что всякая система отсчета, движущаяся относительно некоторой инерциальной системы отсчета прямолинейно и равномерно, также является инерциальной.

Во многих задачах инерциальной может считаться система отсчета, связанная с поверхностью Земли. В то же время начало отсчета такой системы совершает вращательное движение, обусловленное суточным вращением Земли вокруг своей оси. Поэтому, строго говоря, такую систему отсчета нельзя считать инерциальной. Ускорение рассматриваемой системы отсчета будет в общем случае зависеть от радиуса планеты и географической широты, на которой расположено начало отсчета системы. Из рис. видно, что



,

где - радиус планеты, α – географическая широта.

Линейная скорость вращения начала отсчета (т. О)

,

где Т – период обращения планеты вокруг своей оси.

Связанное с суточным вращением нормальное ускорение т. О

.

Наличие нормального ускорения приводит к тому, что, например, полное ускорение тела, свободно падающего в такой системе отсчета, будет равно

а груз на нити (отвес) в состоянии покоя будет ориентирован строго говоря не перпендикулярно поверхности Земли. Однако при длительности земных суток 24 ч нормальное ускорение т. О даже при ее расположении на экваторе, т.е. когда , будет составлять

м/с 2 ,

что примерно в 288 раз меньше ускорения свободного падения. Поэтому во многих практически важных случаях наличием дополнительного центростремительного ускорения можно пренебречь, считая систему отсчета, связанную с поверхностью Земли инерциальной.

Сила. Принцип суперпозиции сил. В качестве меры механического воздействия одного тела на другое в механике вводится векторная величина, называемая силой . Механическое воздействие может осуществляться как между непосредственно контактирующими телами (например, при ударе), так и между удаленными телами. В последнем случае взаимодействие между телами осуществляется через особую форму материи – поле . Взаимодействие при этом распространяется в пространстве с конечной скоростью. Прямая, вдоль которой направлена сила, называется линией действия силы . Опыты показали, что механическое воздействие на тело N сил , приложенных в одной точке, равнозначно воздействию на тело одной силы F , являющейся векторной суммой этих сил:

Выражение (1) представляет собой математическую формулировку принципа суперпозиции сил .

Замечание : следует иметь в виду, что соотношение (1) выполняется строго только применительно к материальной точке. В случае, когда силы приложены к разным точкам тела, соотношение (1) перестает быть справедливым .

Свободные и несвободные тела. Связи. Реакции связей. Принцип освобождаемости. Тело называется свободным, если на его перемещения не наложено никаких ограничений. На практике в большинстве случаев тела нельзя считать свободными, так как на их движение и возможные положения наложены те или иные ограничения. Такие ограничения в механике называют связями . При изучении поведения отдельных несвободных тел или механических систем в механике пользуются принципом освобождаемости : несвободное тело (или систему тел) можно рассматривать как свободное, если заменить действие на него тел, осуществляющих связи, соответствующими силами . Эти силы называются реакциями связей .

Масса и импульс тела . Силовое воздействие на тело со стороны других тел вызывает изменение его скорости, т.е. сообщает данному телу ускорение. Опыт показывает, что одинаковое воздействие сообщает разным телам разные по величине ускорения. Кроме того, всякое тело сопротивляется попыткам изменить состояние его движения. Из опыта известно, что оказавшись под воздействием силы, тело изменяет направление и (или) скорость своего движения постепенно , проявляя таким образом свойство инертности . В качестве количественной меры инертности тела в физику была введена величина, называемая массой тела. Масса обладает свойством аддитивности , т.е. масса тела (механической системы) равна сумме масс его отдельных частей.

Предположим, что в результате кратковременного воздействия на тело (или материальную точку) силы F тело массой m приобрело скорость v .

Определение : импульсом тела (материальной точки) называется векторная величина, определяемая соотношением

Для импульса, как и для силы, выполняется принцип суперпозиции: если система состоит из N частей массами , двигающихся со скоростями , то результирующий импульс системы определяется выражением

. (3)

Второй закон Ньютона. Уравнение движения тела. Второй закон Ньютона гласит, что скорость изменения импульса тела равна действующей на тело силе :

Уравнение (4) называется уравнением движения тела . Заменив в (8) импульс соотношением (2), получим

Если предположить, что масса тела не изменяется с течением времени, то соотношение (5) приводится к виду

. (6)

Таким образом, формула (6) является частным случаем соотношения (5). Из (6) непосредственно следует, что движение тела с ускорением означает, что на тело действует сила . Справедливо и обратное утверждение.

Третий закон Ньютона. Всякое действие тел друг на друга носит характер взаимодействия. Если тело 1 действует на тело 2 с силой F 21 , то и тело 2 действует на первое тело с силой F 12 . Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению :

Из третьего закона Ньютона следует, что силы всегда возникают попрано: всякой силе приложенной к какому-либо телу можно сопоставить равную ей по величине и противоположную по направлению силу, приложенную к другому телу, взаимодействующему с данным телом.

Закон всемирного тяготения. Все тела в природе взаимно притягивают друг друга. Закон, которому подчиняется это притяжение был установлен Ньютоном и носит название закона всемирного тяготения . Согласно этому закону сила, с которой две материальные точки притягиваются друг к другу, прямо пропорциональна массам этих точек и обратно пропорциональна квадрату расстояния между ними :

Помимо материальных точек соотношение (8) справедливо так же и для шаров. Коэффициент пропорциональности , называется гравитационной постоянной. Направление действия силы проходит по прямой, соединяющей материальные точки. В случае притяжения двух тел конечных размеров закон всемирного тяготения дает сложное выражение для силы взаимодействия тел. Посмотрим на рис. 1, на котором представлены взаимодействующие тела. Разобьем тела на N достаточно малых частей. Сила гравитационного притяжения, действующая на элемент первого тела со стороны элемента второго тела может быть представлена в виде

.

Согласно принципу суперпозиции на элемент со стороны второго тела будет действовать сила

.

Просуммировав последнее выражение по i , найдем силу взаимодействия между телами

.

Сила тяжести и вес тела. Под действием силы притяжения Земли все тела падают на ее поверхность с одинаковым ускорением g . Согласно второму закону Ньютона это означает, что в системе отсчета, связанном с Землей на все тела действует сила

называемая силой тяжести . Пусть теперь тело покоится на горизонтальной опоре (см. рис. 2). В этом случае сила тяжести будет уравновешена силой реакции опоры N , действующей на тело со стороны опоры. Тогда по третьему закону Ньютона тело будет действовать на опору с силой G :

называемой весом тела . Следует иметь в виду, что, вообще говоря, вес тела может быть не равен силе тяжести (пример с лифтом).

Силы упругости. Мы уже отмечали, что часто используемое в механике понятие «абсолютно твердое тело» представляет собой математическую абстракцию. В действительности под действием приложенных к нему сил всякое тело деформируется. Различают упругую и неупругую деформации. Если после прекращения действия сил, тело восстанавливает свои размеры и форму, то такая деформация называется упругой.

Рассмотрим пружину, имеющую в недеформированном состоянии длину , и приложим к ее концам равные по величине и противоположные по направлению силы F 1 и F 2 (см. рис. 1). Под действием этих сил пружина растянется на величину . В состоянии равновесия внешние силы F 1 и F 2 будут уравновешены внутренними упругими силами, возникающими в пружине при ее деформации. Опытным путем установлено, что при небольших деформациях (в этом случае деформация упругая) удлинение пружины оказывается пропорциональным растягивающей силе :

Коэффициент пропорциональности k называется коэффициентом жесткости пружины. Соотношение (1) носит название закона Гука .

Силы трения. Силы трения возникают при перемещении соприкасающихся поверхностей друг относительно друга. Трение, возникающее при относительном перемещении двух соприкасающихся тел, называется внешним . Трение между частями одного и того же сплошного тела называется внутренним (например, трение в жидкостях или газах). Различают сухое и вязкое трение. Сухое трение – это трение между поверхностями двух твердых тел при отсутствии жидкой (газообразной) прослойки между ними. В случае наличия такой прослойки, а также в случае трения друг о друга слоев жидкости или газа, или в случае трения твердого тела о жидкость, говорят о вязком тернии. В сухом трении выделяют трение скольжения и трение качения .

Силы трения всегда направлены по касательной к трущимся поверхностям, причем так, что они противодействуют относительному перемещению поверхностей (см. рис.2).

Сухое трение . В случае сухого трения сила терния возникает не только при скольжении тел относительно друг друга, но и при попытке вызвать такое скольжение. В последнем случае говорят о том, что между телами действует сила трения покоя . Рассмотрим еще раз рис. 2. Пусть на тело 1 действует сила нормального давления N . Эта сила может быть обусловлена различными причинами, в частности весом тела. Приложим теперь к телу 1 силу F , направленную в горизонтальном направлении. Мы увидим, что для того, чтобы сдвинуть тело 1 с места придется увеличить силу F до некоторого значения . Пока тело 1 будет оставаться в покое. Согласно второму закону Ньютона это означает, что на тело будет действовать уравновешивающая силу F сила трения F тр. Причем до тех пор, пока тело 1 не сдвинется с места справедливо соотношение

Заметим, что по третьему закону Ньютона сила, равная по модулю , и противоположная ей по направлению будет действовать и на тело 2 (см. рис. 2).

После того, как тело 1 сдвинется с места, между ним и телом 2 будет действовать сила трения скольжения, величина которой, вообще говоря, будет зависеть от скорости перемещения тела 1 относительно тела 2, а также от природы и состояния соприкасающихся поверхностей. При специальной обработке поверхностей, возможно реализовать ситуацию, когда сила трения скольжения практически не будет зависеть от скорости.

Законы сухого терния сводятся к следующему: максимальная сила трения покоя и сила трения скольжения не зависят от площади соприкасающихся поверхностей и приблизительно пропорциональна силе нормального давления, прижимающей трущиеся поверхности друг к другу:

, (2)

где - коэффициент трения . График зависимости силы трения в этом случае представлен на рис. 3.

Вязкое трение и сопротивление среды. Как показывает опыт, сила вязкого терния, возникающая при перемещении слоев жидкости друг относительно друга, оказывается в существенной зависимости от скорости относительного движения слоев. В случае небольших скоростей с достаточной для практики точностью выполняется закон прямой пропорциональности между скоростью и силой вязкого трения:

где знак «-» означает, что сила трения, действующая на слой жидкости, всегда противоположна скорости движения этого слоя.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.