Что такое внутренняя энергия. Внутренняя энергия

Рассмотрение того или иного физического явления или класса явлений удобно производить при помощи моделей разной степени приближения. Например, при описании поведения газа используется физическая модель - идеальный газ.

Любая модель имеет границы применимости, при выходе за которые требуется ее уточнение либо применение более сложных вариантов. Здесь мы рассмотрим простой случай описания внутренней энергии физической системы исходя из наиболее существенных свойств газов в определенных пределах.

Идеальный газ

Эта физическая модель для удобства описания некоторых основополагающих процессов следующим образом упрощает реальный газ:

  • Пренебрегает размерами молекул газа. Это означает, что существуют явления, для адекватного описания которых данный параметр несущественен.
  • Пренебрегает межмолекулярными взаимодействиями, то есть принимает, что в интересующих ее процессах они проявляются в ничтожно малые промежутки времени и не оказывают влияния на состояние системы. При этом взаимодействия носят характер абсолютно упругого удара, при котором не происходит энергопотерь на деформации.
  • Пренебрегает взаимодействием молекул со стенками резервуара.
  • Принимает, что система «газ - резервуар» характеризуется термодинамическим равновесием.

Такая модель подходит для описания реальных газов, если давления и температуры относительно невелики.

Энергетическое состояние физической системы

Всякая макроскопическая физическая система (тело, газ или жидкость в сосуде) обладает, помимо собственной кинетической и потенциальной, еще одним видом энергии - внутренней. Эту величину получают, суммируя энергии всех составляющих физическую систему подсистем - молекул.

Каждая молекула в составе газа тоже имеет свою потенциальную и кинетическую энергию. Последняя обусловлена непрерывным хаотическим тепловым движением молекул. Различные взаимодействия между ними (электрическое притяжение, отталкивание) определяются потенциальной энергией.

Нужно помнить, что если энергетическое состояние каких-либо частей физической системы не оказывает никакого влияния на макроскопическое состояние системы, то оно не принимается во внимание. Например, при обычных условиях ядерная энергия не проявляет себя в изменениях состояния физического объекта, поэтому ее учитывать не нужно. Но при больших температурах и давлениях это уже необходимо делать.

Таким образом, внутренняя энергия тела отражает характер движения и взаимодействия его частиц. Это означает, что данный термин является синонимом часто употребляемого понятия «тепловая энергия».

Одноатомные газы, то есть такие, атомы которых не объединены в молекулы, существуют в природе - это инертные газы. Такие газы, как кислород, азот или водород, могут существовать в подобном состоянии только в условиях, когда извне затрачивается энергия на постоянное возобновление этого состояния, поскольку их атомы химически активны и стремятся соединиться в молекулу.

Рассмотрим энергетическое состояние одноатомного идеального газа, помещенного в сосуд некоторого объема. Это простейший случай. Мы помним, что электромагнитное взаимодействие атомов между собой и со стенками сосуда, а, следовательно, и их потенциальная энергия пренебрежимо малы. Так что внутренняя энергия газа включает в себя только сумму кинетических энергий его атомов.

Ее можно вычислить, умножив среднюю кинетическую энергию атомов в газе на их количество. Средняя энергия равна E = 3/2 х R / N A х T, где R - универсальная газовая постоянная, N A - число Авогадро, Т - абсолютная температура газа. Число атомов подсчитываем, умножая количество вещества на постоянную Авогадро. Внутренняя энергия одноатомного газа будет равна U = N A х m / M х 3/2 х R/N A х T = 3/2 х m / M х RT. Здесь m - масса и М - молярная масса газа.

Предположим, что химический состав газа и его масса всегда остаются одинаковыми. В таком случае, как видно из полученной нами формулы, внутренняя энергия зависит только от температуры газа. Для реального газа нужно будет учитывать, помимо температуры, изменение объема, поскольку оно влияет на потенциальную энергию атомов.

Молекулярные газы

В приведенной выше формуле число 3 характеризует количество степеней свободы движения одноатомной частицы - оно определяется числом координат в пространстве: x, y, z. Для состояния одноатомного газа вообще безразлично, вращаются ли его атомы.

Молекулы же сферически асимметричны, поэтому при определении энергетического состояния молекулярных газов нужно учитывать кинетическую энергию их вращения. Двухатомные молекулы, кроме перечисленных степеней свободы, связанных с поступательным движением, имеют еще две, связанные с вращением вокруг двух взаимно перпендикулярных осей; у многоатомных молекул таких независимых осей вращения три. Следовательно, частицы двухатомных газов характеризуются количеством степеней свободы f=5, у многоатомных же молекул f=6.

Вследствие хаотичности, присущей тепловому движению, все направления и вращательного, и поступательного перемещения совершенно равновероятны. Средняя кинетическая энергия, вносимая каждым видом движения, одинакова. Поэтому мы можем подставить величину f в формулу, что позволяет рассчитать внутреннюю энергию идеального газа любого молекулярного состава: U = f / 2 х m / M х RT.

Конечно, мы видим из формулы, что эта величина зависит от количества вещества, то есть от того, сколько и какого газа мы взяли, а также от структуры молекул этого газа. Однако, поскольку мы условились не менять массу и химический состав, то учитывать нам нужно только температуру.

Теперь рассмотрим, как величина U связана с другими характеристиками газа - объемом, а также давлением.

Внутренняя энергия и термодинамическое состояние

Температура, как известно, является одним из состояния системы (в данном случае газа). В идеальном газе она связана с давлением и объемом соотношением PV = m / M х RT (так называемое уравнение Клапейрона - Менделеева). Температура же определяет тепловую энергию. Так что последнюю можно выразить через набор других параметров состояния. Она безразлична к предыдущему состоянию, а также к способу его изменения.

Посмотрим, как изменяется внутренняя энергия, когда система переходит из одного термодинамического состояния в другое. Ее изменение при любом подобном переходе определяется разностью начального и конечного значений. Если система через некоторое промежуточное состояние возвратилась к первоначальному, то эта разность будет равна нулю.

Допустим, мы нагрели газ в резервуаре (то есть подвели к нему дополнительную энергию). Термодинамическое состояние газа изменилось: возросли его температура и давление. Такой процесс идет без изменения объема. Внутренняя энергия нашего газа увеличилась. После этого наш газ отдал подведенную энергию, остыв до исходного состояния. Такой фактор, как, например, скорость этих процессов, не будет иметь никакого значения. Результирующее изменение внутренней энергии газа при любой скорости нагревания и охлаждения равняется нулю.

Важным моментом является то, что одному и тому же значению тепловой энергии может соответствовать не одно, а несколько термодинамических состояний.

Характер изменения тепловой энергии

Для того чтобы изменить энергию, требуется совершить работу. Работа может совершаться самим газом или внешней силой.

В первом случае затрата энергии на совершение работы производится за счет внутренней энергии газа. Например, мы имели в резервуаре с поршнем сжатый газ. Если отпустить поршень, расширяющийся газ станет поднимать его, совершая работу (чтобы она была полезной, пусть поршень поднимает какой-нибудь груз). Внутренняя энергия газа уменьшится на величину, затраченную на работу против силы тяжести и сил трения: U 2 = U 1 - A. В этом случае работа газа положительна, поскольку направление силы, приложенной к поршню, совпадает с направлением движения поршня.

Начнем опускать поршень, совершая работу против силы давления газа и опять-таки против сил трения. Тем самым мы сообщим газу некоторое количество энергии. Здесь уже считается положительной работа внешних сил.

Помимо механической работы, существует и такой способ отнять у газа или сообщить ему энергию, как Мы уже встречались с ним в примере с нагреванием газа. Энергия, переданная газу в ходе процессов теплообмена, называется количеством теплоты. Теплообмен бывает трех видов: теплопроводность, конвекция и лучистый перенос. Рассмотрим их немного подробнее.

Теплопроводность

Способность вещества к теплообмену, осуществляемому его частицами путем передачи друг другу кинетической энергии в ходе взаимных столкновений при тепловом движении - это теплопроводность. Если некоторая область вещества нагрета, то есть ей сообщено определенное количество теплоты, внутренняя энергия через некоторое время посредством столкновений атомов или молекул окажется распределена между всеми частицами в среднем однородно.

Понятно, что теплопроводность сильно зависит от частоты столкновений, а та, в свою очередь - от среднего расстояния между частицами. Поэтому газ, особенно идеальный, характеризуется весьма низкой теплопроводностью, и это свойство часто используют для теплоизоляции.

Из реальных газов теплопроводность выше у тех, чьи молекулы наиболее легкие и при этом многоатомные. Этому условию в наибольшей степени отвечает молекулярный водород, в наименьшей - радон, как самый тяжелый одноатомный газ. Чем более разрежен газ, тем худшим проводником тепла он является.

В целом передача энергии за счет теплопроводности для идеального газа - очень малоэффективный процесс.

Конвекция

Гораздо эффективнее для газа такой как конвекция, при которой внутренняя энергия распределяется посредством потока вещества, циркулирующего в поле тяготения. горячего газа формируется за счет архимедовой силы, поскольку он менее плотный вследствие Смещающийся вверх горячий газ постоянно замещается более холодным - устанавливается циркуляция газовых потоков. Поэтому для того, чтобы обеспечить эффективный, то есть наиболее быстрый, нагрев через конвекцию, необходимо подогревать резервуар с газом снизу - как и чайник с водой.

Если же необходимо отнять у газа какое-то количество теплоты, то холодильник эффективнее размещать вверху, так как отдавший энергию холодильнику газ будет устремляться вниз под действием тяготения.

Примером конвекции в газе является обогрев воздуха в помещениях при помощи отопительных систем (их размещают в комнате как можно ниже) или охлаждение с применением кондиционера, а в природных условиях явление тепловой конвекции служит причиной перемещения воздушных масс и влияет на погоду и климат.

При отсутствии силы тяжести (при невесомости в космическом корабле) конвекция, то есть циркуляция воздушных потоков, не устанавливается. Так что нет смысла зажигать на борту космического корабля газовые горелки или спички: горячие продукты сгорания не будут отводиться вверх, а кислород - подводиться к источнику огня, и пламя затухнет.

Лучистый перенос

Вещество может нагреваться и под действием теплового излучения, когда атомы и молекулы приобретают энергию, поглощая электромагнитные кванты - фотоны. При низких частотах фотонов этот процесс не очень эффективен. Вспомним, что, когда мы открываем микроволновую печку, то обнаруживаем там горячие продукты, но не горячий воздух. С повышением частоты излучения эффект лучевого нагрева повышается, например, в верхней атмосфере Земли сильно разреженный газ интенсивно нагревается и ионизируется солнечным ультрафиолетом.

Различные газы в разной степени поглощают тепловое излучение. Так, вода, метан, углекислый газ поглощают его довольно сильно. На этом свойстве основано явление парникового эффекта.

Первое начало термодинамики

Вообще говоря, изменение внутренней энергии через нагревание газа (теплообмен) также сводится к совершению работы либо молекул газа, либо над ними посредством внешней силы (что обозначается так же, но с обратным знаком). Какая же работа совершается при таком способе перехода из одного состояния в другое? Ответить на этот вопрос нам поможет закон сохранения энергии, точнее, его конкретизация применительно к поведению термодинамических систем - первое начало термодинамики.

Закон, или универсальный принцип сохранения энергии, в наиболее обобщенной форме гласит, что энергия не рождается из ничего и не пропадает бесследно, а лишь переходит из одной формы в другую. В отношении термодинамической системы это надо понимать так, что работа, совершаемая системой, выражается через разность между сообщаемым системе (идеальному газу) количеством теплоты и изменением ее внутренней энергии. Иначе говоря, на это изменение и на работу системы затрачивается сообщенное газу количество теплоты.

В виде формул это записывается гораздо проще: dA = dQ - dU, и соответственно, dQ = dU + dA.

Мы уже знаем, что эти величины не зависят от способа, которым совершается переход между состояниями. От способа зависит скорость этого перехода и, как следствие, эффективность.

Что касается второго начала термодинамики, то оно задает направление изменения: теплота не может быть переведена от более холодного (а значит, менее энергичного) газа к более горячему без дополнительных затрат энергии извне. Второе начало также указывает, что часть энергии, расходуемой системой на совершение работы, неизбежно диссипирует, теряется (не исчезает, а переходит в непригодную для использования форму).

Термодинамические процессы

Переходы между энергетическими состояниями идеального газа, могут иметь разный характер изменения тех или иных его параметров. Внутренняя энергия в процессах переходов разного типа также будет вести себя по разному. Рассмотрим кратко несколько видов таких процессов.

  • Изохорный процесс протекает без изменения объема, следовательно, газ никакой работы не совершает. Внутренняя энергия газа изменяется как функция разности конечной и начальной температур.
  • Изобарный процесс происходит при неизменном давлении. Газ совершает работу, а его тепловая энергия рассчитывается так же, как и в предыдущем случае.
  • Изотермический процесс характеризуется постоянной температурой, а, значит, и тепловая энергия не меняется. Количество теплоты, получаемое газом, целиком уходит на совершение работы.
  • Адиабатический, или адиабатный процесс протекает в газе без теплопередачи, в теплоизолированном резервуаре. Работа совершается только за счет затрат тепловой энергии: dA = - dU. При адиабатическом сжатии тепловая энергия увеличивается, при расширении - соответственно уменьшается.

Различные изопроцессы лежат в основе функционирования тепловых машин. Так, изохорный процесс имеет место в бензиновом двигателе при крайних положениях поршня в цилиндре, а второй и третий такты двигателя - это примеры адиабатического процесса. При получении сжиженных газов адиабатическое расширение играет важную роль - благодаря ему становится возможна конденсация газа. Изопроцессы в газах, при исследовании которых не обойтись без понятия о внутренней энергии идеального газа, характерны для многих явлений природы и находят применение в самых разных отраслях техники.

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • Какие макропараметры определяют энергию внутренюю энергию тела

  • Каким образом можно изменить внутреннюю энергию тела ответ

  • Определения теплового движения и внутренней энергии

  • Темы кодификатора ЕГЭ : внутренняя энергия, теплопередача, виды теплопередачи.

    Частицы любого тела - атомы или молекулы - совершают хаотическое непрекращающееся движение (так называемое тепловое движение ). Поэтому каждая частица обладает некоторой кинетической энергией.

    Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

    Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

    Внутренняя энергия тела - это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом .

    Внутренняя энергия термодинамической системы - это сумма внутренних энергий тел, входящих в систему .

    Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

    1. Кинетическая энергия непрерывного хаотического движения частиц тела.
    2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
    3. Энергия электронов в атомах.
    4. Внутриядерная энергия.

    В случае простейшей модели вещества - идеального газа - для внутренней энергии можно получить явную формулу.

    Внутренняя энергия одноатомного идеального газа

    Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

    Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма - ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

    Функция состояния

    Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

    Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

    Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

    Совершение механической работы;
    теплопередача.

    Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

    Изменение внутренней энергии: совершение работы

    Если работа совершается над телом, то внутренняя энергия тела возрастает.

    Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура - это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

    Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

    Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы - работу совершили молоток и сила трения о доску.

    Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

    Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным . Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться - его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

    Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

    Изменение внутренней энергии: теплопередача

    Теплопередача - это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы . Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом .

    Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

    Сейчас мы рассмотрим их более подробно.

    Теплопроводность

    Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

    Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню - от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

    Рис. 1. Теплопроводность

    Теплопроводность - это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела .

    Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

    Плохими проводниками тепла являются поэтому пористые тела - такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

    Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

    Происходит это вследствие другого вида теплопередачи - конвекции.

    Конвекция

    Конвекция - это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества .

    Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

    В результате устанавливается циркуляция воздуха, которая и служит примером конвекции - распространение тепла в комнате осуществляется воздушными потоками.

    Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

    Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

    Рис. 2. Конвекция

    В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

    Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать . Если радиатор установить под потолком, то никакая циркуляция не возникнет - тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

    Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

    Тепловое излучение

    Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

    Здесь работает третий вид теплопередачи - тепловое излучение . Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

    Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле...

    В результате развития этого процесса в пространстве распространяется электромагнитная волна -«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой - в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет - частный случай электромагнитных волн.

    Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

    Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет - это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше - частоты ультрафиолетового излучения.

    Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением - в напоминание о том, что их источником служит тепловое движение частиц вещества.

    Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

    При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна - довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

    Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

    Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

    Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

    Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

    Эта формула является математическим выражением первого начала термодинамики

    Для квазистатических процессов выполняется следующее соотношение:

    Идеальные газы

    Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

    .

    Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае является функцией и температуры, и объёма.

    Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

    ,

    где - количество вещества, - изменение температуры.

    Литература

    • Сивухин Д. В. Общий курс физики. - Издание 5-е, исправленное. - М .: Физматлит , 2006. - Т. II. Термодинамика и молекулярная физика. - 544 с. - ISBN 5-9221-0601-5

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Внутренняя энергия" в других словарях:

      внутренняя энергия - Функция состояния закрытой термодинамической системы, определяемая тем, что ее приращение в любом процессе, происходящем в этой системе, равно сумме теплоты, сообщенной системе, и работы, совершенной над ней. Примечание Внутренняя энергия… … Справочник технического переводчика

      Энергия физ. системы, зависящая от её внутр. состояния. В. э. включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т. д.) и энергию вз ствия этих ч ц. Кинетич. энергия движения системы как целого и … Физическая энциклопедия

      ВНУТРЕННЯЯ ЭНЕРГИЯ - энергия тела или системы, зависящая от их внутреннего состояния; складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах, энергии взаимодействия электронных… … Большая политехническая энциклопедия

      Тела складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Большой Энциклопедический словарь

      внутренняя энергия - ▲ энергия материальное тело, в соответствии с, состояние, внутренний температура внутренняя эн … Идеографический словарь русского языка

      внутренняя энергия - – это полная энергия системы за вычетом потенциальной, обусловленной воздействием на систему внешних силовых полей (в поле тяготения), и кинетической энергии движущейся системы. Общая химия: учебник / А. В. Жолнин … Химические термины

      Современная энциклопедия

      Внутренняя энергия - тела, включает кинетическую энергию составляющих тело молекул, атомов, электронов, ядер, а также энергию взаимодействия этих частиц друг с другом. Изменение внутренней энергии численно равно работе, которую совершают над телом (например, при его… … Иллюстрированный энциклопедический словарь

      внутренняя энергия - термодинамическая величина, характеризизующая количество всех видов внутренних движений, совершенных в системе. Измерить абсолютную внутреннюю энергия тела невозможно. На практике измеряют лишь изменение внутреннюю энергию… … Энциклопедический словарь по металлургии

      Тела, складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Энциклопедический словарь

    Книги

    • Пробуждающая энергия. Счастье есть? Счастье присутствия (количество томов: 3) , Хуснетдинова Айгуль. "Пробуждающая энергия. Как все устроено на самом деле и как жить счастливо" . Каждый день в своей практике я сталкиваюсь с мистическими случаями, но при этом живу обычной современной жизнью,…

    Вы видите взлетающую ракету. Она совершает работу – поднимает космонавтов и груз. Кинетическая энергия ракеты возрастает, так как по мере подъёма ракета приобретает всё большую скорость. Потенциальная энергия ракеты также возрастает, так как она всё выше поднимается над Землёй. Следовательно, сумма этих энергий, то есть механическая энергия ракеты, тоже увеличивается.

    Мы помним, что при совершении телом работы его энергия уменьшается. Однако ракета совершает работу, но её энергия не уменьшается, а увеличивается! В чём же разгадка противоречия? Оказывается, что кроме механической энергии существует ещё один вид энергии – внутренняя энергия. Именно за счёт уменьшения внутренней энергии сгорающего топлива ракета совершает механическую работу и, кроме того, увеличивает свою механическую энергию.

    Не только горючие , но и горячие тела обладают внутренней энергией, которую легко превратить в механическую работу. Проделаем опыт. Нагреем в кипятке гирю и поставим на жестяную коробочку, присоединённую к манометру. По мере того как воздух в коробочке будет прогреваться, жидкость в манометре начнёт двигаться (см. рисунок).

    Расширяющийся воздух совершает над жидкостью работу. За счёт какой энергии это происходит? Разумеется, за счёт внутренней энергии гири. Следовательно, в этом опыте мы наблюдаем превращение внутренней энергии тела в механическую работу. Заметим, что механическая энергия гири в этом опыте не меняется – она всё время равна нулю.

    Итак, внутренняя энергия – это такая энергия тела, за счёт которой может совершаться механическая работа, при этом не вызывая убыли механической энергии этого тела.

    Внутренняя энергия любого тела зависит от множества причин: рода и состояния его вещества, массы и температуры тела и других. Внутренней энергией обладают все тела: большие и маленькие, горячие и холодные, твёрдые, жидкие и газообразные.

    Наиболее легко на нужды человека может быть использована внутренняя энергия лишь, образно говоря, горячих и горючих веществ и тел. Это нефть, газ, уголь, геотермальные источники вблизи вулканов и так далее. Кроме того, в XX веке человек научился использовать и внутреннюю энергию так называемых радиоактивных веществ. Это, например, уран, плутоний и другие.

    Взгляните на правую часть схемы. В популярной литературе нередко упоминаются тепловая, химическая, электрическая, атомная (ядерная) и другие виды энергии. Все они, как правило, являются разновидностями внутренней энергии, так как за счёт них может совершаться механическая работа, не вызывая при этом убыли механической энергии. Понятие внутренней энергии мы рассмотрим более подробно при дальнейшем изучении физики.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.