3 закона движения. Законы ньютона

Первый закон Ньютона : существуют системы отсчета, в которых любое изолированное не подвергающееся действию внешних сил тело сохраняет свое состояние покоя или равномерного прямолинейного движения. Такие системы отсчета называются инерциальными.
Первый закон Ньютона часто называют законом инерции, поскольку движение, не поддерживаемое никаким воздействием, - это движение по инерции. При формулировке закона инерции И. Ньютон опирался на труды Г. Галилея, который первым понял ошибочность утверждения, что тело, на которое ничто не действует, может только покоиться. Галилей показал, что такое тело может либо покоиться, либо двигаться с постоянной скоростью.
Второй закон Ньютона: под действием силы F тело массой т приобретает такое ускорение а, что произведение массы на ускорение будет равно действующей силе, т. е.

Второй закон Ньютона показывает, что причиной изменения скорости тела является действие на него окружающих тел.

Формула второго закона ньютона:

где Ар - изменение импульса тела за время At, вызванное действием силы F. Формула (1) справедлива лишь в том случае, когда масса тела т не изменяется, в то время как (2) верна всегда. Видно, что при т = const формула (2) обращается в формулу (1):

Учитывая принцип суперпозиции сил (равнодействующая нескольких сил равна их векторной сумме), второй закон Ньютона можно записать в виде:
ma = F1 + ... + Fn.

Третий закон Ньютона : при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению, т. е.
F12 = - F21
Силы, о которых идет речь в третьем законе Ньютона, приложены к разным телам, но всегда имеют одну природу.
Примерами таких пар сил могут служить: силы гравитационного взаимодействия двух тел; вес тела и сила реакции опоры; кулоновские силы и др.
Являясь основой классической механики, законы Ньютона описывают взаимодействия макроскопических тел, участвующих в нерелятивистских движениях (их скорости много меньше скорости света). При этом тела рассматриваются как материальные точки, а движение описывается относительно инерциальных систем отсчета.

Всякое действие тел друг на друга носит характер, взаимодействия: если тело 1 действует на тело 2 с силой то и тело 2 в свою очередь действует на тело 1 с силой

Третий закон Ньютона утверждает, что силы, с которыми действуют друг на друга взаимодействующие равны по величине и противоположны по направлению. Используя приведенные выше обозначения сил, содержание третьего закона можно представить в виде равенства:

Из третьего закона Ньютона вытекает, что силы возникают попарно: всякой силе, приложенной к какому-то телу, можно сопоставить равную ей по величине и противоположно направленную силу, приложенную к другому телу, взаимодействующему с данным.

Третий закон Ньютона бывает справедлив не всегда. Он выполняется вполне строго в случае контактных взаимодействий (т. е. взаимодействий, наблюдающихся при непосредственном соприкосновении тел), а также при взаимодействии находящихся на некотором расстоянии друг от друга покоящихся тел.

В качестве примера нарушения третьего закона Ньютона может служить система из двух заряженных частиц движущихся в рассматриваемый момент так, как показано на рис. 11.1. В электродинамике доказывается, что, кроме подчиняющейся третьему закону силы электростатического взаимодействия на первую частицу будет действовать магнитная сила На вторую же частицу действует лишь сила равная Величина магнитной силы, действующей на вторую частицу, для изображенного на рисунке случая равна нулю.

Отметим, что при скоростях частиц, много меньших скорости света в пустоте (при ), сила F пренебрежимо мала по сравнению с силой так что третйй закон Ньютона оказывается практически справедливым и в этом случае.

Теперь рассмотрим систему из двух электрически нейтральных частиц удаленных друг от друга на расстояние . Вследствие всемирного тяготения эти частицы притягивают друг друга с силой

В данном случае взаимодействие частиц осуществляется через гравитационное поле. Скажем, первая частица создает в окружающем ее пространстве поле, которое проявляет себя в том, что на помещенную в какую-либо точку этого поля частицу действует сила притяжения к первой частице. Аналогично вторая частица создает поле, которое проявляет себя в действии на первую частицу. Опыт дает, что изменения поля, обусловленные, например, изменением положения создающей поле частицы, распространяются в пространстве не мгновенно, а с хотя и очень большой, но конечной скоростью, равной скорости света в пустоте с.

Предположим, что первоначально частицы покоятся в положениях 1 и 2 (рис. 11.2). Силы взаимодействия равны по величине и противоположны по направлению. Теперь пусть частица очень быстро (со скоростью, почти равной с) сместится в положение . В этой точке на частицу будет действовать сила меньшая по величине. и иначе направленная, чем (напомним, что поле частицы остается неизменным). На, вторую же частицу, пока возмущение поля, вызванное смещением не достигнет точки 2, будет продолжать действовать сила Следовательно, пока двигалась частица течение некоторого времени после того, как она остановилась в точке 1, третий закон Ньютона был нарушен.

Если бы частица перемещалась из точки 1 в точку Г со скоростью V, много меньшей или скорость распространения возмущений поля была бесконечно большой, то мгновенные значения поля в точке 2 отвечали бы положениям частицы в, тот же момент времени, и следовательно, нарушений третьего закона не наблюдалось бы.

Ньютоновская механика вообще справедлива лишь для скоростей движения, много меньших скорости света (при ). Поэтому в рамках этой механики скорость распространения возмущений поля считается бесконечной, а третий закон Ньютона выполняющимся всегда.

Три закона Ньютона лежат в основе классической механики и позволяют вывести уравнения движения. С момента формулировки законов Ньютона пошел отчет в истории не только

Иссак Ньютон

(25.12.1642 - 20.03.1727)

Английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии»

современной физики, но и естественных наук.


Первый закон Ньютона часто еще называется инерциальным законом. Он утверждает, что существуют такие системы отсчета, в которых любое тело, что не подверглось воздействию внешних сил, сохраняет состояние покоя или прямолинейного равномерного движения.

mx a = F

Закон говорит, что в этой же системе любые другие свободные тела должны вести себя абсолютно одинаково. Состояние покоя или равномерного движения являются вполне равноправными и не требуют объяснения. Любая система, которая находится в поступательном движении, прямолинейно и равномерно по отношению к инерциальной также является инерциальной.


Второй закон Ньютона говорит, что причиной изменения скорости тел, которые находятся в состоянии равномерного движения, может изменить свою скорость только при воздействии посторонних тел. Закон утверждает, что точка (тело) в инерциальных системах приобретает ускорение прямопропорционально силе, которая на него действует и обратнопропорциональна массе точки (тела).

Данная формула справедлива при неизменяемой массе тела. В обратном случае используется формула.

В третьем законе Ньютона говорится о том, что тела действуют друг на друга с силами одинаковыми за модулем и различными по направлению. В нем утверждается, что любые влияния тел друг на друга являются взаимными. Если тело (F 12) действует на другое тело (F 21) с определенной силой, то и другое тело тоже действует на первое. F 12 = F 21 .

Открытие данных законов стало поворотным моментом в истории физики. В совокупности законы дают физикам возможность наблюдения за всеми процессами, которые происходят во

«Я смотрю на себя, как на ребенка, который, играя на морском берегу, нашел несколько камешков поглаже и раковин попестрее, чем удавалось другим, в то время как неизмеримый океан истины расстилался перед моим взором неисследованным».

Исаак Ньютон

всей вселенной благодаря возможности поднимать в атмосферу ракеты, космические корабли и конструировать машины.

Данные законы были сформулированы Исааком Ньютоном в 1687. История их открытия известна всем. Согласно легенде, Ньютон сидел в своем саду и обратил внимание на падающее с дерева яблоко. В результате у него возникла мысль, что если сила тяготения действует на дерево, то она может действовать и повсюду. Впервые же мысль о тяготении пришла в голову студенту того же Ньютона, но она не распространилась в результате неправильных расчетов.

Говорится о поведении тела, изолированного от воздействия других тел. Второй закон говорит о прямо противоположной ситуации. В нем рассматриваются случаи, когда тело или несколько тел воздействуют на данное.

Оба эти закона описывают поведение одного конкретного тела. Но во взаимодействии всегда участвуют минимум два тела. Что будет происходить с обоими этими телами? Как описать их взаимодействие? Анализом этой ситуации и занялся Ньютон после формулировки своих первых двух законов. Займемся и мы такими же изысканиями.

Взаимодействие двух тел

Мы знаем, что при взаимодействии воздействуют друг на друга оба тела. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы. Такое может происходить среди по-разному воспитанных людей, но никак не в природе.

Мы знаем, что если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не ощутимо.

Однако, если вы попробуете пнуть тяжелый железный мяч, то живо ощутите это ответное воздействие. Фактически, мы каждый день по многу раз пинаем очень и очень тяжелый мяч нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Соотношение сил во взаимодействии между телами

Так что из этих рассуждений видно, что при взаимодействии двух тел, не только первое действует на второе с некоторой силой, но и второе в ответ действует на первое также с некоторой силой. Возникает вопрос: а как соотносятся эти силы? Какая из них больше, какая меньше?

Для этого необходимо проделать некоторые измерения. Потребуются два динамометра, но в домашних условиях их вполне могу заменить два безмена. Они измеряют вес, а вес это тоже сила, только выраженная в единицах массы в случае безмена. Поэтому, если у вас есть два безмена, то проделайте следующее.

Один из них оденьте колечком на что-то неподвижное, например, на гвоздь в стене, а второй соедините с первым крючками. И потяните за колечко второго безмена. Проследите за показаниями обоих приборов. Каждый из них покажет силу, с которой на него воздействует другой безмен.

И хотя мы тянем только за один из них, окажется, что показания обоих, как на очной ставке, будут совпадать. Получается, что сила, с которой мы воздействуем вторым безменом на первый, равна силе, с которой первый безмен воздействует на второй.

Третий закон Ньютона: определение и формула

Сила действия равна силе противодействия . В этом и состоит суть третьего закона Ньютона. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению. Третий закон Ньютона можно записать в виде формулы:

F_1 = - F_2,

Где F_1 и F_2 силы действия друг на друга соответственно первого и второго тела.

Справедливость третьего закона Ньютона была подтверждена многочисленными экспериментами. Этот закон справедлив как для случая, когда одно тело тянет другое, так и для случая, когда тела отталкиваются. Все тела во Вселенной взаимодействуют друг с другом, подчиняясь этому закону.

Зако́ны Ньюто́на - три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год)

Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции . Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

Современная формулировка

В современной физике первый закон Ньютона принято формулировать в следующем виде:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).

Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.

Второй закон Ньютона

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами.

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;
— сила, приложенная к материальной точке;
— масса материальной точки.

Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

где — импульс точки, — её скорость, а — время. При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени

Иногда предпринимаются попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила .

Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается в виде:

или, в случае если силы не зависят от времени,

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Историческая формулировка

Исходная формулировка Ньютона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя материальными точками. Возьмём для примера замкнутую систему, состоящую из двух материальных точек. Первая точка может действовать на вторую с некоторой силой , а вторая — на первую с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным материальным точкам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия.

Историческая формулировка

Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса . Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.