Бинарные отношения и их свойства. Бинарные отношения. Операции над бинарными отношениями Бинарные отношения и их примеры

Декартовым произведением двух множеств X и Y называется множество всех упорядоченных пар (x , y ) таких, что
, а
.

Пример 1 . Пусть .

Тогда , .

Очевидно, что
, т.е. операция декартова произведения множеств не является коммутативной.

Декартовым произведением множеств
называется множество
всех упорядоченных наборов
таких, чтоЕсли
, то декартово произведение обозначают
.

Будем говорить, что задано соответствие q между множествами X и Y , если задана упорядоченная тройка
, где
.Множество X называется областью отправления, а Y – областью прибытия соответствия q (обозначают
). Каждый элементy в паре
называется образом элементаx (x – прообразом элемента y ) при данном соответствии q .

Соответствие
называетсяотображением множества X во множество Y , если каждый элемент
имеет образ
, т.е..

Отображение
называетсяфункциональным , если каждый элемент
имеетединственный образ
:. Множество образов при данном отображении
обозначается
:.

Если множество
совпадает с множествомY , то говорят, что
осуществляет отображениена множество Y .

Соответствие
называетсявзаимно однозначным (биекцией) , если а) является отображением; б) функционально; в) отображает X «на» множество Y ; г) из условия
следует
.

Другими словами,
является биекцией, если каждый элемент
имеет единственный образ
, а каждый элемент
имеет единственный прообраз
при данном отображении:

(1.2)

1.2.2 Определение бинарного отношения

Определение. Говорят, что на множестве X задано бинарное отношение R , если задано подмножество декартова произведения
(т.е.
).

Пример 2 . Пусть
Зададим наХ следующие отношения:

–отношение равенства;

–отношение предшествования;

делится на – отношение делимости.

Все эти отношения заданы с помощью характеристического свойства. Ниже перечислены элементы этих отношений:

Тот факт, что пара (x , y ) принадлежит данному отношению R , будем записывать:
или xRy . Например, для отношения Q запись 4Q 2 означает, что 4 делится на 2 нацело, т.е.

Областью определения
бинарного отношения R называется множество
Областью значений
называется множество

Так, для отношения Р из примера 2 областью определения является множество
, а областью значений –
.

1.2.3 Способы задания бинарного отношения

Бинарное отношение можно задать, указав характеристическое свойство или перечислив все его элементы. Более наглядными способы задания бинарного отношения являются график отношения, схема отношения, граф отношения, матрица отношения.

График отношения изображается в декартовой системе координат; на горизонтальной оси отмечается область определения, на вертикальной – множество значений отношения; элементу отношения (х,у ) соответствует точка плоскости с этими координатами. На рис. 1.7,а) приведен график отношения Q примера 2.

Схема отношения изображается с помощью двух вертикальных прямых, левая из которых соответствует области определения отношения, а правая – множеству значений отношения. Если элемент (х,у ) принадлежит отношению R , то соответствующие точки из
и
соединяются отрезком прямой. На рис. 1.7,б) приведена схема отношения Q из примера 2.

Граф отношения
строится следующим образом. На плоскости в произвольном порядке изображаются точки – элементы множестваХ . Пара точек х и у соединяется дугой (линией со стрелкой) тогда и только тогда, когда пара (х,у ) принадлежит отношению R . На рис. 1.8,а) приведен граф отношения Q примера 2.

Пусть
. Матрица отношения
имеет n строк и n столбцов, а ее элемент определяется по правилу:

На рис.1.8,б) приведена матрица отношения Q примера 2.

Свойства отношений:


1) рефлексивность;


2)симметричность;


3)транзитивность.


4)связанность.


Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: х Rх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.


Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.


Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: ab, ba (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.


Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.


Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно х Rх: .


Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l », заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.


Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .


Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y , граф содержит стрелку, идущую от y к х (рис. 35).


Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.


Существуют отношения, которые не обладают свойством симметричности.


Действительно, если отрезок х длиннее отрезка у , то отрезок у не может быть длиннее отрезка х . Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.


Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.


Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у , то у не может быть больше х ), отношение «больше на» и др.


Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.


Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRz xRz.


Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z , содержит стрелку, идущую от х к z.


Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а= b, b=с)(а=с).


Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b , а отрезок b перпендикулярен отрезку с , то отрезки а и с не перпендикулярны!


Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.


Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это можно записать так: xy xRy или yRx.


Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y , либо y>x.


На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.


Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y , что ни число х не является делителем числа y , ни число y не является делителем числа х (числа 17 и 11 , 3 и 10 и т.д.).


Рассмотрим несколько примеров. На множестве Х={1, 2, 4, 8, 12} задано отношение «число х кратно числу y ». Построим граф данного отношения и сформулируем его свойства.


Про отношение равенства дробей говорят, оно является отношением эквивалентности.


Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.


Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).


В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.


Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества - классы эквивалентности.


Так, мы установили, что отношению равенства на множестве
Х ={ ;; ; ; ; } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.


Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?


Во-первых, эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {; ; }, неразличимы с точки зрения отношения равенства, и дробь может быть заменена другой, например . И эта замена не изменит результата вычислений.


Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.


В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.


Другим важным видом отношений являются отношения порядка. Рассмотрим задачу.На множестве Х ={3, 4, 5, 6, 7, 8, 9, 10 } задано отношение «иметь один и тот же остаток при делении на 3 ». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9 ). Во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10 ). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8 ). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х . Следовательно, отношение «иметь один и тот же остаток при делении на 3 », заданное на множестве Х , является отношением эквивалентности.


Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».


Отношение R на множестве Х называется отношением строгого порядка , если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х< y ».


Если же отношение обладает свойствами рефлексивности, антисимметричности и транзитивности, то такое оно будет являться отношением нестрогого порядка . Например, отношение «х y ».


Примерами отношения порядка могут служить: отношение «меньше» на множестве натуральных чисел, отношение «короче» на множестве отрезков. Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка . Например, отношение «меньше» на множестве натуральных чисел.


Множество Х называется упорядоченным, если на нем задано отношение порядка.


Например, множество Х= {2, 8, 12, 32 } можно упорядочить при помощи отношения «меньше» (рис. 41), а можно это сделать при помощи отношения «кратно» (рис. 42). Но, являясь отношением порядка, отношения «меньше» и «кратно» упорядочивают множество натуральных чисел по-разному. Отношение «меньше» позволяет сравнивать два любых числа из множества Х , а отношение «кратно» таким свойством не обладает. Так, пара чисел 8 и 12 отношением «кратно» не связана: нельзя сказать, что 8 кратно 12 либо 12 кратно 8.


Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Определения

  • 1. Бинарным отношением между элементами множеств А и В называется любое подмножество декартова произведения RAB, RAА.
  • 2. Если А=В, то R - это бинарное отношение на A.
  • 3. Обозначение: (x, y)R xRy.
  • 4. Область определения бинарного отношения R - это множество R = {x: существует y такое, что (x, y)R}.
  • 5. Область значений бинарного отношения R - это множество R = {y: существует x такое, что (x, y)R}.
  • 6. Дополнение бинарного отношения R между элементами А и В - это множество R = (AB) R.
  • 7. Обратное отношение для бинарного отношения R - это множество R1 = {(y, x) : (x, y)R}.
  • 8. Произведение отношений R1AB и R2BC - это отношение R1 R2 = {(x, y) : существует zB такое, что (x, z)R1 и (z, y)R2}.
  • 9. Отношение f называется функцией из А в В, если выполняется два условия:
    • а) f = А, f В
    • б) для всех x, y1, y2 из того, что (x, y1)f и (x, y2)f следует y1=y2.
  • 10. Отношение f называется функцией из А на В, если в первом пункте будет выполняться f = А, f = В.
  • 11. Обозначение: (x, y)f y = f(x).
  • 12. Тождественная функция iA: AA определяется так: iA(x) = x.
  • 13. Функция f называется 1-1-функцией, если для любых x1, x2, y из того, что y = f(x1) и y = f(x2) следует x1=x2.
  • 14. Функция f: AB осуществляет взаимно однозначное соответствие между А и В, если f = А, f = В и f является 1-1-функцией.
  • 15. Свойства бинарного отношения R на множестве А:
    • - рефлексивность: (x, x)R для всех xA.
    • - иррефлексивность: (x, x)R для всех xA.
    • - симметричность: (x, y)R (y, x)R.
    • - антисимметричность: (x, y)R и (y, x)R x=y.
    • - транзитивность: (x, y)R и (y, z)R (x, z)R.
    • - дихотомия: либо (x, y)R, либо (y, x)R для всех xA и yA.
  • 16. Множества А1, A2, ..., Аr из Р(А) образуют разбиение множества А, если
  • - Аi , i = 1, ..., r,
  • - A = A1A2...Ar,
  • - AiAj = , i j.

Подмножества Аi , i = 1, ..., r, называются блоками разбиения.

  • 17. Эквивалентность на множестве А - это рефлексивное, транзитивное и симметричное отношение на А.
  • 18. Класс эквивалентности элемента x по эквивалентности R - это множество [x]R={y: (x, y)R}.
  • 19. Фактор множество A по R - это множество классов эквивалентности элементов множества А. Обозначение: A/R.
  • 20. Классы эквивалентности (элементы фактор множества А/R) образуют разбиение множества А. Обратно. Любому разбиению множества А соответствует отношение эквивалентности R, классы эквивалентности которого совпадают с блоками указанного разбиения. По-другому. Каждый элемент множества А попадает в некоторый класс эквивалентности из A/R. Классы эквивалентности либо не пересекаются, либо совпадают.
  • 21. Предпорядок на множестве A - это рефлексивное и транзитивное отношение на А.
  • 22. Частичный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А.
  • 23. Линейный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А, удовлетворяющее свойству дихотомии.

Пусть A={1, 2, 3}, B={a, b}. Выпишем декартово произведение: AB = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }. Возьмём любое подмножество этого декартова произведения: R = { (1, a), (1, b), (2, b) }. Тогда R - это бинарное отношение на множествах A и B.

Будет ли это отношение являться функцией? Проверим выполнение двух условий 9a) и 9б). Область определения отношения R - это множество R = {1, 2} {1, 2, 3}, то есть первое условие не выполняется, поэтому в R нужно добавить одну из пар: (3, a) или (3, b). Если добавить обе пары, то не будет выполняться второе условие, так как ab. По этой же причине из R нужно выбросить одну из пар: (1, a) или (1, b). Таким образом, отношение R = { (1, a), (2, b), (3, b) } является функцией. Заметим, что R не является 1-1 функцией.

На заданных множествах A и В функциями также будут являться следующие отношения: { (1, a), (2, a), (3, a) }, { (1, a), (2, a), (3, b) }, { (1, b), (2, b), (3, b) } и т.д.

Пусть A={1, 2, 3}. Примером отношения на множестве A является R = { (1, 1), (2, 1), (2, 3) }. Примером функции на множестве A является f = { (1, 1), (2, 1), (3, 3) }.

Примеры решения задач

1. Найти R, R, R1, RR, RR1, R1R для R = {(x, y) | x, y D и x+y0}.

Если (x, y)R, то x и y пробегают все действительные числа. Поэтому R = R = D.

Если (x, y)R, то x+y0, значит y+x0 и (y, x)R. Поэтому R1=R.

Для любых xD, yD возьмём z=-|max(x, y)|-1, тогда x+z0 и z+y0, т.е. (x, z)R и (z, y)R. Поэтому RR = RR1 = R1R = D2.

2. Для каких бинарных отношений R справедливо R1= R?

Пусть RAB. Возможны два случая:

  • (1) AB. Возьмём xAB. Тогда (x, x)R (x, x)R1 (x, x)R (x, x)(AB) R (x, x)R. Противоречие.
  • (2) AB=. Так как R1BA, а RAB, то R1= R= . Из R1 = следует, что R = . Из R = следует, что R=AB. Противоречие.

Поэтому если A и B, то таких отношений R не существует.

3. На множестве D действительных чисел определим отношение R следующим образом: (x, y)R (x-y) - рациональное число. Доказать, что R есть эквивалентность.

Рефлексивность:

Для любого xD x-x=0 - рациональное число. Потому (x, x)R.

Симметричность:

Если (x, y)R, то x-y = . Тогда y-x=-(x-y)=- - рациональное число. Поэтому (y, x)R.

Транзитивность:

Если (x, y)R, (y, z)R, то x-y = и y-z =. Складывая эти два уравнения, получаем, что x-z = + - рациональное число. Поэтому (x, z)R.

Следовательно, R - это эквивалентность.

4. Разбиение плоскости D2 состоит из блоков, изображённых на рисунке а). Выписать отношение эквивалентности R, соответствующее этому разбиению, и классы эквивалентности.

Аналогичная задача для b) и c).


а) две точки эквивалентны, если лежат на прямой вида y=2x+b, где b - любое действительное число.

b) две точки (x1,y1) и (x2,y2) эквивалентны, если (целая часть x1 равна целой части x2) и (целая часть y1 равна целой части y2).

с) решить самостоятельно.

Задачи для самостоятельного решения

  • 1. Доказать, что если f есть функция из A в B и g есть функция из B в C, то fg есть функция из A в C.
  • 2. Пусть A и B - конечные множества, состоящие из m и n элементов соответственно.

Сколько существует бинарных отношений между элементами множеств A и B?

Сколько имеется функций из A в B?

Сколько имеется 1-1 функций из A в B?

При каких m и n существует взаимно-однозначное соответствие между A и B?

3. Доказать, что f удовлетворяет условию f(AB)=f(A)f(B) для любых A и B тогда и только тогда, когда f есть 1-1 функция.

Рассмотрим отношение «уважать», определенное на множестве всех людей %%M%%. Для полной информации о том, кто кого уважает, составим следующее множество %%R%%. Переберем все пары %%(a, b)%%, где %%a, b%% пробегают множество всех людей. Если %%a%% уважает %%b%%, то пару %%(a,b)%% отнесем к множеству %%R%%, иначе — нет.

Этот список полностью отражает отношение «уважать». Если нужно узнать, уважает ли человек %%a%% человека %%b%%, то просмотрим множество %%R%%. Если пара %%(a, b) \in R%%, то заключаем, что %%a%% уважает %%b%%. В случае %%(a,b) \notin R%% — %%a%% не уважает %%b%%.

Определение

Бинарным отношением , определенным на множестве %%M%%, называется произвольное подмножество %%R%% из декартового произведения %%M^2%%.

Пример

Рассмотрим отношение больше на множестве %%M = \{1, 2\}%%. Тогда

$$ M^2 = \big\{(1, 1), (1,2), (2,1), (2,2)\big\} $$ Из него выбирем все пары %%(a,b)%%, где %%a > b%%. Получим $$ R = \big\{(2,1)\big\} $$

Виды бинарных отношений

Рефлексивное бинарное отношение

рефлексивным , если для любого элемента %%a%% из %%M%%, выполняется условие %%a~R~a%%. $$ \begin{array}{l} \forall a\in M~~a~R~a \text{ или}\\ \forall a\in M~~(a,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше больше рефлексивным? Если да, то каждое число является больше самого себя, что неверно. Поэтому отношение больше не рефлексивно.
  2. Рассмотрим отношение равно на множестве действительных чисел. Оно является рефлексивным , так как каждое действительное число равно самому себе.

Симметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется симметричным , если для любых двух элементов %%a, b%% из %%M%%, из условия %%a~R~b%% следует условие %%b~R~a%%.

$$ \begin{array}{l} \forall a,b\in M~~a~R~b \rightarrow b~R~a \text{ или}\\ \forall a,b\in M~~(a,b) \in R \rightarrow (b,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше симметричным? Оно не является симметричным, так как если %%a > b%%, то условие %%b > a%% не выполняется. Поэтому отношение больше не симметрично.
  2. Пусть %%R%% — отношение, определенное на множестве %%M = \{a,b,c\}%%. При этом %%R = \big\{ (a,b), (b,c), (a,a), (b,a), (c,b)\big\}%%. Для этого отношения имеем %%\forall x,y \in M ~~ (x,y) \in R \rightarrow (y,x) \in R%%. По определению %%R%% симметрично.

Транзитивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется транзитивным , если для любых элементов %%a, b, c%% из %%M%%, из условий %%a~R~b%% и %%b~R~c%% следует условие %%a~R~c%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~c \rightarrow a~R~c \text{ или}\\ \forall a,b,c\in M~~(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R. \end{array} $$

Пример

Рассмотрим отношение больше на множестве дейтсвительных чисел. Оно является транзитивным , так как для любых элементов выполняется условние %%\forall a,b,c\in M~~a > b \land b > c \rightarrow a > c%%. Так, например, подставив вместо %%a, b%% и %%c%% числа %%2, 1%% и %%0%% соответственно, получим: если %%2 > 1%% и %%1 > 0%%, то %%2 > 0%% — верное утверждение (вспомните импликацию, из истины следует истина).

Антисимметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется антисимметричным , если для любых элементов %%a, b%% из %%M%%, из условий %%a~R~b%% и %%b~R~a%% следует условие %%a = b%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~a \rightarrow a = b \text{ или}\\ \forall a,b\in M~~(a,b) \in R \land (b,a) \in R \rightarrow a = b. \end{array} $$

Пример

Отношение больше или равно на множестве действительных чисел антисимметрично . Действительно, если %%a \geq b%% и %%b \geq a%%, %%a = b%%.

Эквивалентное бинарное отношение

эквивалентности , если оно рефлексивно , симметрично и транзитивно .

Нетрудно проверить, что отношение параллельности на множестве прямых плоскости является отношением эквивалентности.

Отношение частичного порядка

Бинарное отношение %%R%% на множестве %%M%% называется отношением частичного порядка , если оно рефлексивно , антисимметрично и транзитивно .

Отношение больше или равно на множестве действительных чисел является отношением частичного порядка.

Построение отрицаний

Пусть %%R%% — бинарное отношение на множестве %%M%%, и %%P%% — одно из следующих условий:

  • отношение %%R%% рефлексивно,
  • отношение %%R%% симметрично,
  • отношение %%R%% транзитивно,
  • отношение %%R%% антисимметрично.

Построим для каждого из них отрицание выполнения условия %%P%%.

Отрицание рефлексивности

По определению %%R%% рефлексивно, если каждый элемент множества %%M%% находится в отношении %%R%% к самому себе, то есть %%\forall a \in M~~a~R~a%%. Тогда рассмотрим отрицание рефлексивности как истинное высказывание %%\overline{\forall a \in M~~a~R~a}%%. Используем равносильность %%\overline{\forall x P(x)} \equiv \exists x \overline {P(x)}%%. В нашем случае получаем %%\forall a \in M~~a~R~a \equiv \exists a\in M~~a~\not\text{R }~a%%, что и нужно.

Аналогично получаем и остальные отрицания. В итоге получаем следующие утверждения:

    %%R%% не рефлексивно тогда и только тогда, когда

    $$ \exists a \in M~~a~\not R~a $$

    %%R%% не симметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~\not R~a $$

    %%R%% не транзитивно тогда и только тогда, когда

    $$ \exists a, b, c \in M a~R~b \land b~R~c \land a~\not R~c $$

    %%R%% не антисимметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~R~a \land a \neq b. $$

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û("х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û("х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение . Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у , следует, что и элемент у находится в отношении R с элементом х .

R симметричнона Х Û("х , у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у , то и прямая у обязательно будет пересекать прямую х .

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение . Отношение R намножестве Х называется асимметричным, если ни для каких элементов х , у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х .

R асимметричнона Х Û("х , у Î Х ) х R у Þ

Пример. Отношение «х < у » асимметрично, т.к. ни для какой пары элементов х , у нельзя сказать, что одновременно х < у и у < х .

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение . Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у , а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û("х , у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение . Отношение R намножестве Х называется транзитивным, если для любых элементов х , у , z из множества Х из того, что х находится в отношении с у , а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û("х , у , z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение . Отношение R намножестве Х называется связным, если для любых элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

R связнона Х Û("х , у , z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

Пример. Отношение «х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.
Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у , то и студент у является однокурсником студента х ;

3) транзитивности, т.к. если студент х - однокурсник у , а студент у – однокурсник z , то студент х будет однокурсником студента z .

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х , порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:


Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.