Свойства отношений на множестве. Бинарные отношения

Определения

  • 1. Бинарным отношением между элементами множеств А и В называется любое подмножество декартова произведения RAB, RAА.
  • 2. Если А=В, то R - это бинарное отношение на A.
  • 3. Обозначение: (x, y)R xRy.
  • 4. Область определения бинарного отношения R - это множество R = {x: существует y такое, что (x, y)R}.
  • 5. Область значений бинарного отношения R - это множество R = {y: существует x такое, что (x, y)R}.
  • 6. Дополнение бинарного отношения R между элементами А и В - это множество R = (AB) R.
  • 7. Обратное отношение для бинарного отношения R - это множество R1 = {(y, x) : (x, y)R}.
  • 8. Произведение отношений R1AB и R2BC - это отношение R1 R2 = {(x, y) : существует zB такое, что (x, z)R1 и (z, y)R2}.
  • 9. Отношение f называется функцией из А в В, если выполняется два условия:
    • а) f = А, f В
    • б) для всех x, y1, y2 из того, что (x, y1)f и (x, y2)f следует y1=y2.
  • 10. Отношение f называется функцией из А на В, если в первом пункте будет выполняться f = А, f = В.
  • 11. Обозначение: (x, y)f y = f(x).
  • 12. Тождественная функция iA: AA определяется так: iA(x) = x.
  • 13. Функция f называется 1-1-функцией, если для любых x1, x2, y из того, что y = f(x1) и y = f(x2) следует x1=x2.
  • 14. Функция f: AB осуществляет взаимно однозначное соответствие между А и В, если f = А, f = В и f является 1-1-функцией.
  • 15. Свойства бинарного отношения R на множестве А:
    • - рефлексивность: (x, x)R для всех xA.
    • - иррефлексивность: (x, x)R для всех xA.
    • - симметричность: (x, y)R (y, x)R.
    • - антисимметричность: (x, y)R и (y, x)R x=y.
    • - транзитивность: (x, y)R и (y, z)R (x, z)R.
    • - дихотомия: либо (x, y)R, либо (y, x)R для всех xA и yA.
  • 16. Множества А1, A2, ..., Аr из Р(А) образуют разбиение множества А, если
  • - Аi , i = 1, ..., r,
  • - A = A1A2...Ar,
  • - AiAj = , i j.

Подмножества Аi , i = 1, ..., r, называются блоками разбиения.

  • 17. Эквивалентность на множестве А - это рефлексивное, транзитивное и симметричное отношение на А.
  • 18. Класс эквивалентности элемента x по эквивалентности R - это множество [x]R={y: (x, y)R}.
  • 19. Фактор множество A по R - это множество классов эквивалентности элементов множества А. Обозначение: A/R.
  • 20. Классы эквивалентности (элементы фактор множества А/R) образуют разбиение множества А. Обратно. Любому разбиению множества А соответствует отношение эквивалентности R, классы эквивалентности которого совпадают с блоками указанного разбиения. По-другому. Каждый элемент множества А попадает в некоторый класс эквивалентности из A/R. Классы эквивалентности либо не пересекаются, либо совпадают.
  • 21. Предпорядок на множестве A - это рефлексивное и транзитивное отношение на А.
  • 22. Частичный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А.
  • 23. Линейный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А, удовлетворяющее свойству дихотомии.

Пусть A={1, 2, 3}, B={a, b}. Выпишем декартово произведение: AB = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }. Возьмём любое подмножество этого декартова произведения: R = { (1, a), (1, b), (2, b) }. Тогда R - это бинарное отношение на множествах A и B.

Будет ли это отношение являться функцией? Проверим выполнение двух условий 9a) и 9б). Область определения отношения R - это множество R = {1, 2} {1, 2, 3}, то есть первое условие не выполняется, поэтому в R нужно добавить одну из пар: (3, a) или (3, b). Если добавить обе пары, то не будет выполняться второе условие, так как ab. По этой же причине из R нужно выбросить одну из пар: (1, a) или (1, b). Таким образом, отношение R = { (1, a), (2, b), (3, b) } является функцией. Заметим, что R не является 1-1 функцией.

На заданных множествах A и В функциями также будут являться следующие отношения: { (1, a), (2, a), (3, a) }, { (1, a), (2, a), (3, b) }, { (1, b), (2, b), (3, b) } и т.д.

Пусть A={1, 2, 3}. Примером отношения на множестве A является R = { (1, 1), (2, 1), (2, 3) }. Примером функции на множестве A является f = { (1, 1), (2, 1), (3, 3) }.

Примеры решения задач

1. Найти R, R, R1, RR, RR1, R1R для R = {(x, y) | x, y D и x+y0}.

Если (x, y)R, то x и y пробегают все действительные числа. Поэтому R = R = D.

Если (x, y)R, то x+y0, значит y+x0 и (y, x)R. Поэтому R1=R.

Для любых xD, yD возьмём z=-|max(x, y)|-1, тогда x+z0 и z+y0, т.е. (x, z)R и (z, y)R. Поэтому RR = RR1 = R1R = D2.

2. Для каких бинарных отношений R справедливо R1= R?

Пусть RAB. Возможны два случая:

  • (1) AB. Возьмём xAB. Тогда (x, x)R (x, x)R1 (x, x)R (x, x)(AB) R (x, x)R. Противоречие.
  • (2) AB=. Так как R1BA, а RAB, то R1= R= . Из R1 = следует, что R = . Из R = следует, что R=AB. Противоречие.

Поэтому если A и B, то таких отношений R не существует.

3. На множестве D действительных чисел определим отношение R следующим образом: (x, y)R (x-y) - рациональное число. Доказать, что R есть эквивалентность.

Рефлексивность:

Для любого xD x-x=0 - рациональное число. Потому (x, x)R.

Симметричность:

Если (x, y)R, то x-y = . Тогда y-x=-(x-y)=- - рациональное число. Поэтому (y, x)R.

Транзитивность:

Если (x, y)R, (y, z)R, то x-y = и y-z =. Складывая эти два уравнения, получаем, что x-z = + - рациональное число. Поэтому (x, z)R.

Следовательно, R - это эквивалентность.

4. Разбиение плоскости D2 состоит из блоков, изображённых на рисунке а). Выписать отношение эквивалентности R, соответствующее этому разбиению, и классы эквивалентности.

Аналогичная задача для b) и c).


а) две точки эквивалентны, если лежат на прямой вида y=2x+b, где b - любое действительное число.

b) две точки (x1,y1) и (x2,y2) эквивалентны, если (целая часть x1 равна целой части x2) и (целая часть y1 равна целой части y2).

с) решить самостоятельно.

Задачи для самостоятельного решения

  • 1. Доказать, что если f есть функция из A в B и g есть функция из B в C, то fg есть функция из A в C.
  • 2. Пусть A и B - конечные множества, состоящие из m и n элементов соответственно.

Сколько существует бинарных отношений между элементами множеств A и B?

Сколько имеется функций из A в B?

Сколько имеется 1-1 функций из A в B?

При каких m и n существует взаимно-однозначное соответствие между A и B?

3. Доказать, что f удовлетворяет условию f(AB)=f(A)f(B) для любых A и B тогда и только тогда, когда f есть 1-1 функция.

Понятие отношения на множестве

Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями,

т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения X х X, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества X х X.

Вообще бинарные отношения на множестве X определяют следующим способом:

Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения X х X.

Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.

Условимся отношения обозначать буквами R, S, Т, Р и др.

Если R - отношения на множестве X, то, согласно определению, R X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.

Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или x R y. Последняя запись читается: «Элемент х находится в отношении R с элементом у».

Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.

Построим, например, граф отношений «меньше», заданного на множестве Х= (2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» - стрелкой (рис. 1).

На том же множестве X можно рассмотреть другое отношение - «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 2).

Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число х меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «х<у», «х у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или х – у = 3).

Для отношения R, заданного на множестве X, всегда можно задать отношение R -1 , ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше у», то обратным ему будет отношение «у больше х».

Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».

Свойства отношений

Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению ХхХ. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые. Рассмотрим на множестве отрезков, представленных на рис. 3, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 4) и будем их сравнивать.

Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно .

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х <=> xRx для любого х X

Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подобен самому себе).

Существуют отношения, которые свойством рефлексивности на обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 4) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или, просто симметричны.

Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на X <=> (xRy => yRx)

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к х. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от х к у, и стрелку, идущую от у к х, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:

Отношение параллельности на множестве прямых (если прямая х параллельна прямой у, то и прямая у параллельна прямой х);

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.

Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится .

антисимметрично на X <=> (xRy и х≠у => )

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может быть больше х);

Отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х).

Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 5. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 4). На нем можно заметить: если стрелки проведены от е к а и от а к с , то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с , то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзитивным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z.

Используя символы, это определение можно записать в таком виде:

R транзитивно на X <=> (xRy и yRz => xRz)

Граф транзитивного отношения с каждой парой стрелок, идущих от х к у и у к z , содержит стрелку, идущую от х к z . Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z , то отрезок х равен отрезку z . Это свойство отражено и на графе отношения равенства (рис. 4)

Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связанно на множестве X <=> (х≠у xRy или yRx)

Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х> у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа хну, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 4), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности-симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве

отрезков связанными не являются.

Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 6).

Решение. Отношение R- антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с , на графе есть стрелка, идущая от b к с .

Отношение R - связанно, так как любые две вершины соединены стрелкой.

Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число у не больше числа х в 2 раза.

Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число х больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3,5 и 8 и др.

Базовые понятия и утверждения

1. Множества и операции над ними. Подмножеством понимают объединение в единое целое определенных вполне различаемых объектов. Объекты при этом называютэлементами образуемого ими множества.

Для обозначения множеств используют прописные буквы, а для обозначения элементов множеств - строчные буквы латинского алфавита.

Запись означает, чтоявляется элементом множества
; в противном случае пишут
.

Множество называют конечным , если оно содержит конечное число элементов, ибесконечным , если оно содержит бесконечное число элементов. Множество, не содержащее элементов, называютпустым и обозначают символом
.

Число элементов конечного множества
называют егомощностью и обозначают
.

Множество можно описать, указав свойство, присущее элементам только этого множества. Множество всех объектов, обладающих свойством
, обозначают
. Конечное множество можно задать путем перечисления его элементов, т.е.
.

Например, запись
означает, что множество
содержит два элемента - числа
и.

Если каждый элемент множества есть элемент множестваB , то говорят, чтоестьподмножество , и пишут:
.

Заметим, что пустое множество
считают подмножеством любого множества.

Если
и
, то говорят, что множестваиравны , и пишут:
.

Если
и
, тоназываютсобственным подмножеством и, чтобы подчеркнуть это, применяют запись
.

Множество всех подмножеств множества
называют егобулеаном и обозначают
.

Например, если
, то

Вводят целый ряд операций над множествами , позволяющих получать из одних множеств другие.

1. Множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств и, называютобъединением A и B и обозначают
, т.е..

2. Множество, состоящее из тех и только тех элементов, которые принадлежат как множеству , так и множеству, называютпересечением A и B и обозначают
, т.е.
.

Если
, то множестваиназываютнепересекающимися .

3. Множество, состоящее из всех элементов множества , не принадлежащих множеству, называютразностью A и B и обозначают
, т.е.
.

4. Обычно в конкретных рассуждениях всякое множество рассматривают как подмножество некоторого достаточно широкого множества, которое называют универсальным . Множество элементов универсального множества, не принадлежащих множеству, называютдополнением и обозначают, т.е.
. Из определения следует, что
.

5. Множество, состоящее из упорядоченных пар
, в которых- элемент множества, а- элемент множества, называютд екартовым произведением множеств A и B и обозначают
, т.е..

Удобным приемом наглядного изображения операций являются диаграммы Эйлера - Венна. На них множества представлены плоскими фигурами (чаще всего кругами). Области, соответствующие множествам, полученным в результате операции, обычно выделяют цветом. На рис. 1.1 приведены диаграммы Эйлера - Венна, иллюстрирующие некоторые из введенных операций.

Рис. 1.1.

В качестве примеранайдем объединение, пересечение, разность и декартово произведение множеств
и
.

Поскольку
,
, то
,
,
,.

Пусть задано универсальное множество . Тогда для любых множеств
выполняются следующиесвойства :

коммутативные законы :

1.
; 2.
;

ассоциативные законы :

дистрибутивные законы :

законы идемпотентности :

7.
; 8.
;

законы де Моргана :

9.
; 10.
;

законы нуля :

11.
; 12.
;

законы единицы :

13.
; 14.
;

законы поглощения :

15.
; 16.
;

законы дополнения :

17.
; 18.
;

закон двойного дополнения :

19.
.

О том, как доказываются эти равенства, можно узнать во второй части данного параграфа.

Операции объединения, пересечения и декартова произведения можно обобщить на случай произвольного конечного числа участников.

Объединением множеств
называют множество, любой элемент которого является элементом хотя бы одного из данных множеств. Обозначение:
или.

Пересечением множеств
называют множество, любой элемент которого является элементом каждого из данных множеств. Обозначение:
или .

Декартовым произведением множеств
называют множество

В частном случае одинаковых сомножителей декартово произведение
обозначают
.

Например, если
, то

Приведем без доказательств утверждения о числе элементов конечных множеств .

1. Если между конечными множествами исуществует взаимно-однозначное соответствие, то
.

2. Если

также конечно и

Например,если
, то множество
имеет мощность
.

3. Если
- конечные попарно-непересекающиеся множества, то множество
также конечно и

Это утверждение называют правилом суммы .

4. Если
- конечные множества, то множествотакже конечно и

Последнее равенство называется формулой включений и исключений . В частных случаях двух и трех множеств она принимает вид:

Заметим, что формула включений и исключений действует и в том случае, когда множества
попарно не пересекаются (в этом случае все слагаемые в правой части формулы, содержащие пересечения множеств, обнуляются и формула трансформируется в правило суммы).

Пусть, например,
,
,
, причем
, а
. Тогда
можно найти по правилу суммы:, а для поиска
нужно использовать формулу включений и исключений:.

Пример 1.В группе из 100 туристов 65 человек знают английский язык, 55 человек знают французский и 38 человек знают оба языка. Сколько туристов в группе знает хотя бы один из этих языков?

◄ Пусть и- множества туристов, знающих соответственно английский и французский язык. Тогда
- множество туристов, знающих хотя бы один из этих языков. Число таких туристов находим по формуле включений и исключений.

Упражнение 1.1.Из 100 студентов-лингвистов польский язык изучают 42, чешский - 25, венгерский - 36, польский и чешский - 15, польский и венгерский - 14, чешский и венгерский - 12, польский, чешский и венгерский - 5. Сколько студентов не изучают ни одного из перечисленных языков?

Совокупность непустых, попарно непересекающихся подмножеств
множестваназываютразбиением , если
.

Например, для множества
совокупность подмножеств
разбиением является, а совокупность подмножеств
не является.

Упражнение 1.2. Найти все разбиения множества
и множества
.

2. Бинарные отношения на множестве. Бинарные отношения -простой и вместе с тем очень важный объект дискретной математики.

Определение. Бинарным отношением на множестве
называется подмножество декартова произведения
.

Для обозначения бинарных отношений, как правило, будем использовать строчные буквы греческого алфавита:
и т.п.

Пусть - некоторое бинарное отношение на множестве
. Если
, то говорят, чтоисвязаны бинарным отношениеми пишут
.

Пример 2. Пусть
. Тогда

и следующие множества могут служить примерами бинарных отношений на множестве
:

Перечислим ряд важных свойств , которыми могут обладать бинарные отношения.

Определенное на множестве
бинарное отношение:

рефлексивно, если для
выполняется
;

симметрично , если для
из
следует
;

антисимметрично , если для
из
и
следует
;

транзитивно, если для
из
и
следует
.

Определение. Если бинарное отношение рефлексивно, симметрично и транзитивно одновременно, то оно называется отношением эквивалентности.

Например, бинарное отношениеиз примера 2 рефлексивно, антисимметрично и транзитивно,- антисимметрично и транзитивно,- рефлексивно, симметрично, антисимметрично и транзитивно,- рефлексивно, симметрично и транзитивно. Следовательно, бинарные отношенияиявляются отношениями эквивалентности, аи- нет.

Определение. Пусть- отношение эквивалентности на множестве
и- элемент
. Классом эквивалентности элементапо бинарному отношениюназывают множество
.

Например, множества
,
,

по отношению, а
,
,
- классы эквивалентности элементов
по.

Упражнение 1.3.На множестве
определены бинарные отношения
и
. Задать эти бинарные отношения перечислением элементов, указать свойства этих бинарных отношений, определить, являются ли они отношениями эквивалентности (если являются, то найти классы эквивалентности их элементов).

Перечислим свойства классов эквивалентности , присущие любому отношению эквивалентности, определенному на произвольном множестве
.

1. Класс эквивалентности любого элемента множества
- непустое множество.

2. Классы эквивалентности любых двух элементов множества
либо не пересекаются, либо совпадают.

3. Объединение классов эквивалентности всех элементов множества
совпадает с самим множеством
.

Доказательство этих свойств приведено во второй части параграфа.

Из свойств классов эквивалентности следует утверждение: в сякое отношение эквивалентности, заданное на множестве
, порождает разбиение множества
на классы эквивалентности этого отношения.

Для иллюстрации этого утверждения вновь обратимся к бинарным отношениям ииз примера 2.

Очевидно, что классы эквивалентности
,
,
элементов множества
по отношениюне пусты, попарно не пересекаются, а их объединение совпадает с самим множеством
. Следовательно,порождает разбиение множества
на три подмножества:
,
,.

Для классов эквивалентности
,
,
элементов
по отношениюимеем: классы эквивалентности элементов
исовпадают и при этом не имеют общих элементов с классом эквивалентности элемента, объединение всех классов совпадает с множеством
. Следовательно, отношениепорождает разбиение множества
на два подмножества:
,
.

Рассмотрим еще один важный класс бинарных отношений.

Определение. Бинарное отношение называется отношением порядка, если оно рефлексивно, антисимметрично и транзитивно.

Пусть - отношение порядка на
. Если для любых двух элементовимножества
верно, что либо
, либо
, тоназывают отношениемлинейного порядка. В противном случае говорят, что- отношениечастичного порядка .

Например, отношениями порядка являются отношенияииз примера 2 (- линейного,- частичного).

Пример 3. Рассмотрим на множестве
бинарное отношение, определяемое условием. Это отношение рефлексивно, антисимметрично и транзитивно, и, значит, является отношением порядка, причем частичного, поскольку элементне связан с элементоми элементне связан с элементом.

Систематизация свойств.

Каждое бинарное (двухместное) отношение характеризуется свойствами рефлексивности, симметричности и транзитивности. Полное или частичное отсутствие этих свойств в отношении отражается в их наименовании приставками соответственно "анти " и "не ". Определённым сочетаниям этих базовых свойств даны свои специальные наименования; например, антисимметричное и антирефлексивное отношение называется асимметричным.

Свойство рефлексивности рассматривается для одного элемента множества.

Отношение называется рефлексивным , если для любого предмета из области его определения имеет место это отношение предмета к самому себе. Отношение ровесник, определенное на области пар людей, рефлексивно, потому что любой человек ровесник самого себя.

Если отношение имеет место не для любой такой пары, то оно называется не рефлексивным . Нерефлексивно отношение любит , определенное на области пар людей, так как не все люди любят себя.

Если отношение не имеет места ни для одной такой пары, то отношение называется анти рефлексивным . Отношение больше, определённое на области пар материальных предметов, антирефлексивно, поскольку ни один предмет не больше самого себя.

Свойство симметричности рассматривается для двух разных элементов множества.

Отношение называется симметричным , когда для любых пар предметов из области его определения верно, что, когда это отношение x и y , то оно имеет место и в паре (y,x) . Отношение ровесник симметрично, так как для любых двух людей верно, что, если первый ровесник второго, то и второй ровесник первого.

Отношение называется не симметричным , если оно верно не для любых двух предметов из области определения. Несимметрично отношение любит , поскольку не для любых двух людей верно, что если первый любит второго, то второй любит первого.

Отношение называется анти симметричным , если в области определения отношения не существует пар указанного вида, для которых это верно. Отношение больше антисимметрично, потому что ни для каких предметов не может быть так, что первый предмет больше второго, а второй больше первого.

Свойство транзитивности рассматривается для трёх разных элементов множества.

Отношение называется транзитивным , если оно обязательно имеет место для пары  (x,z) при условии его наличия в парах (x,y) и (y,z) . Отношение ровесник транзитивно, так как для любых трёх людей, если один человек ровесник другого, а тот ровесник третьего, первый непременно является ровесником третьего.

Отношение называется не транзитивным , если это верно не для любыхпредметов из области определения отношения. Нетранзитивно отношение любит , потому что неверно, что оно имеет место в паре (x,z) всегда, когда оно наличествует в парах (x,y) и (y,z), т. е. не обязательно, чтобы первый человек любил третьего, когда первый любит второго, а второй любит третьего.

Отношение называется ан титранзитивным , если в области определения отношения не существует таких предметов, для которых это было бы верно. Антитранзитивно отношение отец , потому что не найдется таких трёх пар указанного вида, чтобы это отношение имело место во всех трёх. Никогда не может быть так, что первый человек - отец второго, второй - отец третьего, и при этом первый - отец третьего.

Определения.

  • Определение . Отношение ρ называется рефлексивным , если каждый элемент x∈A находится в этом отношении сам с собой: xρx для всех x∈A . На языке кванторов: ∀ x∈A: xρx
  • Определение. Отношение ρ называется симметричным , если из того, что xρy следует, что yρx: ∀x,y∈A: xρy⟹ yρx
  • Определение. Отношение ρ называется транзитивным , если из того, что xρy и yρz , следует, что xρz : ∀x,y,z∈A: (xρy ∧ yρz) ⟹ xρz
    • не рефлексивным , если: ¬∀ x∈A: xρx
    • не симметричным , если: ¬∀x,y∈A: xρy⟹ yρx
    • не транзитивным , если: ¬∀x,y∈A: (xρy∧ yρz)⟹ xρz
      • анти рефлексивным (иррефлексивным), если: ∀x∈A: ¬(xρx)
      • анти симметричным , если: ∀x,y∈A : (xρy⟹ yρx) ⟹ x=y
      • анти транзитивным , если: ∀x,y,z∈A: (xρy∧ yρz) ⟹ ¬(xρz)
  • Определение. Бинарное отношение на некотором множестве называют эквивалентностью (отношением эквивалентности), если оно рефлексивно, симметрично и транзитивно.

Связанные определения

Свойства отношений

Бинарные отношения могут обладать различными свойствами, такими как

Виды отношений

  • Рефлексивное транзитивное отношение называется отношением квазипорядка.
  • Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности .
  • Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка .
  • Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка .
  • Полное антисимметричное (для любых x, y выполняется xRy или yRx) транзитивное отношение называется отношением линейного порядка.
  • Антирефлексивное асимметричное отношение называется отношением доминирования.

Виды двухместных отношений

  • Обратное отношение [уточнить ] (отношение, обратное к R) - это двухместное отношение, состоящее из пар элементов (у, х), полученных перестановкой пар элементов (х, у) данного отношения R. Обозначается: R −1 . Для данного отношения и обратного ему верно равенство: (R −1) −1 = R.
  • Взаимо-обратные отношения (взаимообратные отношения) - отношения, являющиеся обратными друг по отношению к другу. Область значений одного из них служит областью определения другого, а область определения первого - областью значений другого.
  • Рефлексивное отношение - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого х этого множества элемент х на­ходится в отношении R к самому себе, то есть для любого элемента х этого множества имеет место xRx. Примеры рефлексивных отношений: равенство , одновременность , сходство.
  • Антирефлексивное отношение (Иррефлексивное отношение, отметим, что также как антисимметричность не совпадает с несимметричностью иррефлексивность не совпадает с нерефлексивностью.) - двухместное отношение R, определённое на некотором множестве и отличаю­щееся тем, что для любого элемента х этого множества неверно, что оно находится в отношении R к самому себе (неверно, что xRx), то есть возможен случай, что элемент множества не находится в отно­шении R к самому себе. Примеры нерефлексвных отношений: «заботиться о», «развлекать», «нервировать».
  • Транзитивное отношение - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz следует xRz (xRy&yRzxRz). Примеры транзитивных отношений: «больше», «меньше», «равно», «подобно», «выше», «севернее».
  • Нетранзитивное отношение [уточнить ] - двухместное отношение R, оп­ределенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz не следует xRz ((xRy&yRzxRz)). Пример нетранзитивного отношения: «x отец y»
  • Симметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых элементов х и у этого множества из того, что х находится к у в отношении R (xRy), следует, что и у находится в том же отношении к х (уRx). Примером симметричных отношений могут быть равенство (=), отношение эквивалентности , подобия , одновременности, некоторые отношения родства (например, отношение братства).
  • Антисимметричное отношение - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy и xR −1 y следует х = у (то есть R и R −1 выполняются одновременно лишь для равных между собой членов).
  • Асимметричное отношение [уточнить ] - двухместное отношение R, определённое на некотором множестве и отличающееся тем, что для любых х и у из xRy следует yRx. Пример: отношение «больше» (>) и «меньше» (<).
  • Отношение эквивалентности (отношение тождества [уточнить ] , отношение типа равенства) - двухместное отношение R между предметами х и у в предметной области D, удовлетворяющее следующим аксиомам (условиям): Таким образом, отношение типа равенства является одновременно рефлексивным, симметричным и транзитивным. Примеры: равенство, равномощность двух множеств, обмениваемость товаров на рынке, подобие , одновременность . Пример отношения, которое удовлетворяет аксиоме (3), но не удовлетворяет аксиомам (1) и (2): «больше».
  • Отношения порядка - отношения, обладающие только некоторыми из трёх свойств отношения эквивалентности. В частности, отношение рефлексивное и транзитивное, но несимметричное (например, «не больше») образует «нестрогий» порядок. Отношение транзитивное, но нерефлексивное и несимметричное (например, «меньше») - «строгий» порядок.
  • Функция - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что каждому значению x отно­шения xRy y . Пример: «y отец x ». Свойство функциональности отно­шения R записывается в виде аксиомы: (xRy и xRz )→(y z ). Поскольку каждому значению x в выражениях xRy и xRz соответствует одно и то же значение, то y и z совпадут, окажутся одними и теми же. Функциональное отношение однозначно, поскольку каждому значению x отношения xRy соответствует лишь одно-единственное значение y , но не наоборот.
  • Биекция (одно-однозначное отношение) - двухместное отношение R , определенное на некотором мно­жестве, отличающееся тем, что в нём каждому значению х соответствует единственное значение у , и каждому значению у соответствует единственное значение х . Одно-однозначное отношение является частным случаем однозначного отношения.
  • Связанное отношение - это двухместное отношение R , определённое на некотором множестве, отличающееся тем, что для любых двух различных элементов х и у из этого множества, одно из них находится в отношении R к другому (то есть выполнено одно из двух соотношений: xRy или yRx ). Пример: отношение «меньше» (<).

Операции над отношениями

Так как отношения, заданные на фиксированной паре множеств , , суть подмножества множества , то совокупность всех этих отношений образует булеву алгебру относительно операций объединения, пересечения и дополнения отношений. В частности, для произвольных ,

Часто вместо объединения, пересечения и дополнения отношений говорят об их дизъюнкции, конъюнкции и отрицании.

Например, , , то есть объединение отношения строгого порядка с отношением равенства совпадает с отношением нестрого порядка, а их пересечение пусто.

Кроме перечисленных важное значение имеют ещё операции обращения и умножения отношений, определяемые следующим образом.

Если , то обратным отношением называется отношение , определённое на паре , и состоящее из тех пар , для которых . Например, .

Пусть теперь , . Произведением отношений , называется отношение такое, что

Если , и , то произведение отношений не определено. Если же отношения рассматривать определённые на каком-то множестве , то такой ситуации не возникает.

Например, рассмотрим отношение строгого порядка определённого на множестве натуральных чисел. Несложно заметить, что

Бинарные отношения и называются перестановочными, если . Несложно заметить, что для любого бинарного отношения , определённого на , , где символом обозначено равенство, определённое на . Однако равенство не всегда справедливо.

Имеют место следующие тождества:

Отметим, что аналоги последних двух тождеств для не имеют места.

Некоторые свойства отношения можно определить, используя операции над отношениями:

См. также

Литература

  • А. И. Мальцев. Алгебраические системы. - М .: Наука, 1970.

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарное отношение" в других словарях:

    Бинарное отношение - . Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (< или >), отношение включения A Ì B.… … Экономико-математический словарь

    бинарное отношение - Иначе: двуместное или двойственное. «Бинарным отношением на множестве X» называется подмножество упорядоченных пар элементов из X. Примерами Б.о. являются равенство (=), неравенства (), отношение включения A ? B. В широком смысле слова… … Справочник технического переводчика

    Двуместный предикат на заданном множестве. Под Б. о. иногда понимают подмножество множества упорядоченных пар (а, 6) элементов заданного множества А. Б. о. частный случай отношения. Пусть. Если, то говорят, что элемент находится в бинарном… … Математическая энциклопедия

    В логике то, что в отличие от свойства характеризует не отдельный предмет, а пару, тройку и т.д. предметов. Традиционная логика не рассматривала О.; в современной логике О. пропозициональная функция от двух или большего числа переменных. Бинарным … Философская энциклопедия

    отношение - ОТНОШЕНИЕ множество упорядоченных п ок индивидов (где п > 1), т.е. двоек, троек и т.д. Число п называется «местностью», или «арностью», О. и, соответственно, говорят о n местном (п арном) О. Так, например, двуместное О. называют… … Энциклопедия эпистемологии и философии науки

    В теории потребления это формальное описание способности потребителя сравнивать (упорядочивать по желательности) разные наборы товаров (потребительские наборы). Чтобы описать отношение предпочтения, не обязательно измерять желательность… … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Отношения обычно классифицируются по количеству связываемых объектов … Википедия

    У этого термина существуют и другие значения, см. Отношение. Отношение в логике первого порядка двух и более аргументный предикат (многоместный предикат), двух и более предикатное свойство. Знак отношения: R.[уточнить] В терминах отношений… … Википедия

    У этого термина существуют и другие значения, см. Эквивалентность. Отношение эквивалентности () на множестве это бинарное отношение, для которого выполнены следующие условия: Рефлексивность: для любого в, Симметричность: если … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Бинарное отношение на мно … Википедия

электронная книга
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.