Действие рождает противодействие закон ньютона. Три закона Ньютона: Определения и примеры

Три закона сэра Исаака Ньютона описывают движение массивных тел и как они взаимодействуют.

В то время как законы Ньютона могут показаться очевидными для нас сегодня, более трех веков назад они считались революционными.

Содержание:

Ньютон, пожалуй, наиболее известен своей работой по изучению гравитации и движения планет. Призванный астрономом Эдмондом Галлеем после признания того, что за несколько лет до этого он потерял доказательство эллиптических орбит, Ньютон опубликовал свои законы в 1687 году в своей оригинальной работе «Philosophiæ Naturalis Principia Mathematica» (Математические принципы естественной философии), в которой он формализовал описание того, как массивные тела движутся под воздействием внешних сил.

Формулируя свои три закона, Ньютон упростил обращение к массивным телам, считая их математическими точками без размера или вращения. Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температура, свойства материала и т. Д., И сосредоточиться на явлениях, которые могут быть описаны исключительно по массе, длине и времени. Следовательно, три закона не могут быть использованы для описания точности поведения больших жестких или деформируемых объектов; однако во многих случаях они обеспечивают подходящие точные приближения.

Законы Ньютона


Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему отсчета. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

Первый закон движения Ньютона

Первый Закон Движения гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно. Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

Второй закон движения Ньютона

Второй закон движения описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

Третий закон движения Ньютона

Третий закон движения гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.

Кинематика – изучает движение тел, не рассматривая причины, которые это движение обуславливает.

Мат.точка – не имеет размеров, но в мат.точке сосредоточенна масса всего тела.

Поступательное – движение при котором прямая связанная с телом остаётся || самой себе.

Кинетические ур-я движения мат.точки:

Траектория – линия описываемая мат.точкой в пространстве.

Перемещение – приращение радиуса-вектора точки за рассматриваемый промежуток времени.

Скорость – Быстрота движения мат.точки.

Вектором средней скорости<> называется отношение приращения радиуса-вектора точки к промежутку времени.

Мгновенная скорость – величина, равная первой производной радиуса-вектора движущейся точки по времени.

Модуль мгновенной скорости равен первой производной пути по времени.

Компоненты равны производным от координат по времени.

Равномерное – движение при котором за равные промежутки времени тело проходит одинаковые пути.

Неравномерное – движение при котором скорость меняется как по модулю так и по направлению.

    Ускорение и его составляющие.

Ускорение – физ.величина, определяющая быстроту изменения скорости, как по модулю, так и по направлению.

Средним ускорением неравномерного движения в интервале времени от t до t+t называется векторная величина равная отношению изменения скорости к интервалу времениt: .Мгновенным ускорением мат.точки в момент времени t будет предел среднего ускорения. ..

определяет по модулю.

определяет по направлению.т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Нормальная составляющая ускорения направлена по нормали к траектории к центру её кривизны (поэтому её также называют центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих.

Если а н =?,а т =?

  1. 1,2,3 Законы Ньютона.

В основе Динамики мат.точки лежат три закона Ньютона.

Первый закон Ньютона – всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Инертность – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Законы Ньютона выполняются только в инерциальной системе отсчёта .

Инерциальная система отсчёта – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой то другой инерциальной системы.

Масса тела – физ.величина, являющаяся одной из основных характеристик материи, определяющая её инерционные (инертная масса) и гравитационные (гравитационная масса) св-ва.

Сила – векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона – ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки.

Импульс (кол-во движения) – векторная величина, численно равная произведению массы материальной точки на её скорость и имеющая направление скорости.

Более общая формулировка 2-го закона Н.(уравнение движения мт): скорость изменения импульса материальной точки равна действующей на неё силе.

Следствие из 2зН: принцип независимости действия сил: если на мт действует одновременно несколько сил, то каждая из этих сил сообщает мт ускорение согласно 2зН, как будто других сил не было.

Третий закон Ньютона. Всякое действие мт (тел) друг на друга, носит характер взаимодействия; силы, с которыми действуют друг на друга мт, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

    Импульс тела, сила. Закон сохранения импульса.

Внутренние силы – силы взаимодействия между мт механической системы.

Внешние силы – силы, с которыми на мт системы действуют внешние тела.

В механической системе тел, по 3-му закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т.е. геометрическая сумма внутренних сил равна 0.

Запишем 2зН, для каждого из n тел механической системы(мс):

…………………

Сложим эти ур-я:

Т.к. геометрическая сумма внутренних сил мс по 3зН равна 0, то:

где - импульс системы.

В случае отсутствия внешних сил(замкнутая система):

, т.е.

Это и есть закон сохранения импульса : импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Центр масс, движение центра масс.

Центр масс (центр инерции) системы мт называется воображаемая точка С , положение которой характеризует распределение массы этой системы.

Радиус-вектор этой точки равен:

Скорость центра масс (цм):

; , т.е. импульс системы равен произведению массы системы на скорость её центра масс.

Т.к. то:, т.е.:

Закон движения центра масс: центр масс системы движется как мт, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

    Кинематика вращательного движения материальной точки.

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени.

Вектор направлен вдоль оси вращения по правилу правого винта.

Линейная скорость точки:

В векторном виде: , при этом модуль равен:.

Если =const, то вращение равномерное.

Период вращения (Т) – время, за которое точка совершает один полный оборот. ().

Частота вращения ( n ) – число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени. ;.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени: . При ускоренном, при замедленном.

Тангенциальная составляющая ускорения:

Нормальная составляющая: .

Формулы связи линейных и угловых величин:

При :

    Момент силы.

Момент силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведённого из точки О в точку А приложения силы, на силу F.

Здесь - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль момента силы равен .

Момент силы относительно неподвижной оси z – скалярная величина , равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки О данной осиz. Значение момента не зависит от выбора положения точки О на данной оси.

    Момент инерции твёрдого тела. Теорема Штейнера.

Момент инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n мт системы на квадрат их расстояний до рассматриваемой оси.

При непрерывном распределении масс.

Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции J C относительно параллельной оси, проходящеё через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

    Основное уравнение динамики вращательного движения.

Пусть сила F приложена к точке В. Находящейся от оси вращения на расстоянии r, -угол между направлением силы и радиус-векторомr. При повороте тела на бесконечно малый угол , точка приложения В проходит путь, и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая, что , запишем:

Где -момент силы, относительно оси.

Работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идёт на увеличение его кинетической энергии:

Но ,, поэтому

Учитывая, что получим:

Этот и есть относительно неподвижной оси.

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то: .

    Момент импульса. Закон сохранения момента импульса.

Момент импульса (количество движения) мт А относительно неподвижной точки О – физическая величина, определяемая векторным произведением:

где r-радиус-вектор, проведённый из точки О в точку А; - импульс мт.-псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса:

Момент импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки О данной оси.

Т.к. , то момент импульса отдельной частицы:

Момент импульса твёрдого тела относительно оси есть сумма моментов импульса отдельных частиц, а т.к. , то:

Т.о. момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем последнее уравнение: , т.е.:

это и есть уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: Производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство:

В замкнутой системе момент внешних сил и, откуда:L=const, это выражение и есть закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Работа силы. Мощность.

Энергия – универсальная мера различных форм движения и взаимодействия.

Работа силы – величина, характеризующая процесс обмена энергией между взаимодействующими телами в механике.

Если тело движется прямолинейно и на него действует постоянная сила , которая составляет некоторый уголс направлением перемещения, торабота этой силы равна произведению проекции силы F s на направление перемещения, умноженной на перемещение точки приложения силы:

Элементарная работа силы на перемещенииназывается скалярная величина, равная:, где,,.

Работа силы на участке траектории от 1 до 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути:

Если на графике изображена зависимость F s от S, то работа определяется на графике площадью закрашенной фигуры.

При , то А>0

При , то А<0,

При , то А=0.

Мощность – скорость совершения работы.

Т.е. мощность равна скалярному произведению вектору силы на вектор скорости, с которой движется точка приложения силы.

    Кинетическая и потенциальная энергия поступательного и вращательного движения.

Кинетическая энергия механической системы – энергия механического движения этой системы. dA=dT. По 2зН , помножим наи получим:;

Отсюда:.

Кинетическая энергия системы – есть функция состояния её движения, она всегда , и зависит от выбора системы отсчёта.

Потенциальная энергия – механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Если силовое поле характеризуется тем, что работа совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений, то такое поле называется потенциальным, а силы, действующие в нём – консервативными, если же работа зависит от траектории то такая сила – диссипативная .

Т.к. работа совершается за счёт убыли потенциальной энергии, то: ;;, где С – постоянная интегрирования, т.е. энергия определяется с точностью до некоторой произвольной постоянной.

Если силы консервативны, то:

- Градиент скаляра П. (также обозначается ).

Т.к. начало отсчёта выбирается произвольно, то потенциальная энергия может иметь отрицательное значение. (при П=-mgh’).

Найдём потенциальную энергию пружины.

Сила упругости: , по 3зН:F x =-F x упр =kx;

dA=F x dx=kxdx;.

Потенциальная энергия системы является функцией состояния системы, она зависит только от конфигурации системы и от её положения по отношению к внешним телам.

Кинетическая энергия вращения

    Механическая энергия. Закон сохранения механической энергии.

Полная механическая энергия системы – энергия механического движения и взаимодействия: Е=Т+П, т.е. равна сумме кинетической и потенциальной энергий.

Пусть F 1 ’…F n ’ – равнодействующие внутренних консервативных сил. F 1 …F n - равнодействующие внешних консервативных сил. f 1 …f n . Запишем уравнения 2зН для этих точек:

Умножим каждое ур-е на , учтя, что.

Сложим ур-я:

Первый член левой части:

Где dT есть приращение кинетической энергии системы.

Второй член равен элементарной работе внутренних и внешних сил, взятой со знаком минус, т.е. равен элементарному приращению потенциальной энергииdП системы.

Правая часть равенства задаёт работу вешних неконсервативных сил, действующих на систему. Т.о.:

Если внешние неконсервативные силы отсутствуют, то:

d(Т+П)=0;Т+П=Е=const

Т.е. полная механическая энергия системы сохраняется постоянной. Закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.

    Абсолютно упругий удар.

Удар (соударение)

Коэффициент восстановления

абсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара

Центральный удар

Абсолютно упругий удар – столкновение 2-х тел, в результате которого в обоих взаимодействующих не остаётся ни каких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения энергии.

Законы сохранения:

m 1 v 1 +m 2 v 2 =m 1 v’ 1 +m 2 v’ 2

после преобразований:

откуда:v 1 +v 1 ’=v 2 +v 2 ’

решая последнее ур-е и предпедпоследнее найдём:

    Абсолютно неупругий удар.

Удар (соударение) – столкновение 2-х или более тел, при котором взаимодействие длится очень короткое время. При ударе внешними силами можно пренебречь.

Коэффициент восстановления – отношение нормальной составляющей относительной скорости тел после и до удара.

Если для сталкивающих тел =0, то такие тела называютсяабсолютно неупругими , если =1 тоабсолютно упругими.

Линия удара – прямая проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения.

Центральный удар – такой удар, при котором тела до удара движутся вдоль прямой, проходящей через их центр масс.

Абсолютно неупругий удар – столкновении 2-х тел, в результате которого тела объединяются, двигаясь дальше, как единое целое.

Закон сохранения импульса:

Если шары двигались навстречу друг другу, то при абсолютно неупругом ударе шары движутся в сторону большего импульса.

    Поле тяготения, напряжённость, потенциал.

Закон всемирного тяготения: между любыми двумя мт действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек и обратно пропорциональная квадрату расстояния между ними:

G – Гравитационная постоянная (G=6,67*10 -11 Hm 2 /(кг) 2)

Гравитационное взаимодействие между двумя телами осуществляется с помощью поля тяготения , или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное св-во поля в том, что на всякое тело внесённое в это поле действует сила тяготения:

Вектор не завит от массы и называется напряжённостью поля тяготения.

Напряжённость поля тяготения определяется силой действующей со стороны поля на мт единичной массы, и совпадает по направлению с действующей силой, напряжённость есть силовая хар-ка поля тяготения.

Поле тяготения однородное если напряжённость во всех точках его одинакова, и центральным , если во всех точках поля векторы напряжённости направлены вдоль прямых, которые пересекаются в одной точке.

Гравитационное поле тяготения – носитель энергии.

На расстоянии R на тело действует сила:

при перемещении этого тела на расстояние dR затрачивается работа:

Знак минус появляется, т.к. сила и перемещение в данном случае противоположны по направлению.

Затраченная работа в пол тяготения не зависит от траектории перемещения, т.е. илы тяготения консервативны, а поле тяготения является потенциальным.

Если то П 2 =0, тогда запишем:,

Потенциал поля тяготения – скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Т.о.:

Эквипотенциальные – такие поверхности, для которых потенциал постоянен.

Взаимосвязь между потенциалом и напряженностью.

Знак мину указывает на то, что вектор напряжённости направлен в сторону убывания потенциала.

Если тело находится на высоте h, то

    Неинерциальная система отсчёта. Силы инерции при ускоренном поступательном движении системы отсчёта.

Неинерциальная – система отсчёта, движущаяся относительно инерциальной системы отсчёта с ускорением.

Законы Н можно применять в неинерциальной системе отсчёта, если учесть силы инерции. Силы инерции при этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчёта, т.е.:

Силы инерции при ускоренном поступательном движении системы отсчёта.

Т.е. угол отклонения нити от вертикали равен:

Относительно системы отсчёта, связанной с тележкой шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F ин, т.е.:

    Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчёта.

Пусть диск равномерно вращается с угловой скоростью вокруг вертикальной оси, проходящей через его центр. На диске на разных расстояниях от оси вращения установлены маятники (на нитях подвешены шарики). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчёта, связанной с помещением, на шарик действует сила, равная , и направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжестии силы натяжения нити:

Когда движение шарика установится, то:

т.е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчёта, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой.

Сила , называемаяцентробежной силой инерции , направлена по горизонтали от оси вращения диска и равна:.

    Гидростатическое давление, закон Архимеда, закон неразрывности струи.

Гидроаэромеханика – раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твёрдыми телами.

Несжимаемая жидкость – жидкость, плотность которой всюду одинакова и не изменяется со временем.

Давление – физическая величина, определяемая нормальной силой, действующей о стороны жидкости на единицу площади:

Закон Паскаля – давление в любом месте покоящейся жидкости одинаково по всем направлениям, причём давление одинаково передаётся по всему объёму, занятому покоящейся жидкости.

Если жидкость не сжимаема, то при поперечном сечении S столба жидкости, его высоте h и плотности вес:

А давление на нижнее основание:,т.е. давление изменяется линейно с высотой. Давлениеназываетсягидростатическим давлением .

Из этого следует, что давление на нижние слои жидкости будет больше, чем на верхние, значит на тело, погружённое в жидкость действует выталкивающая сила, определяемая законом Архимеда: на тело погружённое в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости:,

Течение – движение жидкости.Поток – совокупность частиц движущейся жидкости.Линии тока – графическое изображение движения жидкости.

Течение жидкости установившееся (стационарно) , если форма расположения линий тока, а так же значения скоростей в каждой её точке со временем не изменяются.

За 1с через сечение S 1 пройдёт объём жидкости равный , а черезS 2 - , здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость не сжимаема, то через оба сечения пройдёт равный объём:

Это и есть уравнение неразрывности струи для несжимаемой жидкости.

    Закон Бернулли.

Жидкость идеальна, движение стационарно.

За малый промежуток времени жидкость перемещается от сеченийS 1 и S 2 к сечениям S’ 1 и S’ 2 .

По закону сохранения энергии изменение полной энергии идеальной несжимаемой жидкости равно работе внешних сил по перемещению массы жидкости:,

где Е 1 и Е 2 – полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно.

С другой стороны А – это работа, совершаемая при перемещении всей жидкости, заключённой между сечениями S 1 и S 2 , за рассматриваемый промежуток времени . Для переноса массыm от S 1 до S’ 1 жидкость должна переместится на расстояние и отS 2 до S’ 2 на расстояние .,гдеF 1 =p 1 S 1 и F 2 =-p 2 S 2 .

В качестве первого из трех законов. Поэтому этот закон называют первым законом Ньютона .

Первый закон механики , или закон инерции был сформулирован Ньютоном следующим образом:

Любое тело удерживается в состоянии покоя или равномерного прямолинейного движения, пока под действием приложенных сил не изменяет это состояние .

В окружении любого тела, покоится оно или движется, есть другие тела, некоторые из которых или все как-то действуют на тело, влияют на состояние его движения. Чтобы выяснить влияние окружающих тел, надо исследовать каждый отдельный случай.

Рассмотрим какое-либо покоящееся тело, не обладающее ускорением, а скорость постоянна и равна нулю. Допустим, это будет шарик, подвешенный на резиновом шнуре. Он находится в покое относительно Земли. Около шарика множество различных тел: шнур, на котором он висит, множество предметов в комнате и других помещениях и, конечно, Земля. Однако, действие всех этих тел на шарик не одинаково. Если, например, убрать мебель в комнате, это не окажет какого-либо влияния на шарик. Но если перерезать шнур, шарик под влиянием Земли начнет падать вниз с ускорением. Но пока шнур не был перерезан, шарик находился в покое. Этот простой опыт показывает, что из всех тел, окружающих шарик, только два заметно влияют на него: резиновый шнур и Земля. Их совместное влияние и обеспечивает состояние покоя шарика. Стоило устранить одно из этих тел — шнур, и состояние покоя нарушилось. Если бы возможно было убрать Землю, это тоже нарушило бы покой шарика: он стал бы двигаться в противоположном направлении.

Отсюда приходим к выводу, что действия на шарик двух тел — шнура и Земли, компенсируют (уравновешивают) друг друга. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было.

Рассмотренный пример, как и другие подобные примеры, позволяют сделать следующий вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

Таким образом, мы пришли к одному из основных законов механики , который называют первым законом Ньютона :

Существуют такие системы отсчета, относительно которых движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

Однако, как выяснилось со временем, первый закон Ньютона выполняется только в инерциальных системах отсчета . Поэтому с точки зрения современных представлений закон Ньютона формулируют следующим образом:

Системы отсчета, относительно которых свободное тело при компенсации внешних воздействий движется равномерно и прямолинейно, называют инерциальными системами отсчета .

Свободным телом в этом случае называют тело, на которое другие тела не оказывают воздействия.

Необходимо помнить, что в первом законе Ньютона рассматриваются тела, которые могут быть представлены в качестве материальных точек.

Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой .

Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их.

1. Первый закон ньютона (закон инерции)

Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей.

Поставим опыт
Будем скатывать шар по наклонной плоскости и наблюдать за его дальнейшим движением по горизонтальной поверхности.
Если она посыпана песком, шар остановится очень скоро (рис. 13.1, а).
Если она покрыта тканью, шар катится значительно дольше (рис. 13.1, б).
А вот по стеклу шар катится очень долго (рис. 13.1, в).

На основании этого и подобных опытов Галилей открыл закон инерции: если на тело не действуют другие тела или действия других тел скомпенсированы, то тлело движется равномерно и прямолинейно или покоится.

Сохранение скорости тела, когда на него не действуют другие тела или действия других тел скомпенсированы, называют явлением инерции .

1. Почему при встряхивании мокрого зонта с него слетают капли воды?

Особенно красиво смотрится явление инерции в фигурном катании (рис. 13.2).

Закон инерции называют также первым законом Ньютона , потому что Ньютон включил его в качестве первого закона в систему трех законов динамики, которые называют «тремя законами Ньютона».

Инерциальные системы отсчета

Закон инерции выполняется с хорошей точностью в системе отсчета, связанной с Землей. Но он не выполняется, например, в системе отсчета, связанной с тормозящим автобусом: при резком торможении пассажиры отклоняются вперед, хотя на них не действуют направленные вперед силы.
Системы отсчета, в которых выполняется закон инерции, называют инерциальными.

Инерциальных систем отсчета бесконечно много. Ведь если некоторая система отсчета является инерциальной, то инерциальной будет любая другая система отсчета, движущаяся относительно нее прямолинейно и равномерно.

Сформулируем теперь первый закон Ньютона с указанием систем отсчета, в которых он выполняется.

Существуют системы отсчета (называемые инерциальными), относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел скомпенсированы .

Изучать влияние взаимодействия тел на их движение удобнее всего именно в инерциальных системах отсчета, потому что в этих системах отсчета изменение скорости тела обусловлено только действием других тел на это тело.

Принцип относительности Галилея

Как показывает опыт, во всех инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях.

Это утверждение называют принципом относительности Галилея .

В справедливости принципа относительности Галилея легко убедиться, сидя в поезде, который плавно движется с постоянной скоростью. В таком случае все опыты с механическими явлениями, поставленные в вагоне, дадут одинаковые результаты независимо от того, едет поезд или стоит: например, лежащее на столе яблоко будет покоиться, а свободно падающие предметы будут падать вертикально вниз (относительно вагона!).

Поэтому пассажир может определить, едет поезд или стоит на станции, только посмотрев в окно (рис. 13.3).

2. Второй закон ньютона

Равнодействующая

Как вы уже знаете из курса физики основной школы, силы – векторные величины: каждая сила характеризуется числовым значением (модулем) и направлением. Силы измеряют с помощью динамометров. Единицей силы в СИ является 1 ньютон (Н). Определение ньютона мы дадим позже.

Если на тело, которое можно считать материальной точкой, действуют несколько сил, то их можно заменить одной силой, которая является векторной суммой этих сил. Ее называют равнодействующей.

На рисунке 13.4 показано, как найти равнодействующую двух сил: а

2. К телу приложены две силы, равные по модулю 1 Н и 2 Н. Отвечая на следующие вопросы, сделайте пояснительные чертежи.
а) Какое наименьшее значение может принимать равнодействующая этих сил? Как направлены силы в этом случае?
б) Какое наибольшее значение может быть у равнодействующей этих сил? Как направлены силы в атом случае?
в) Может ли равнодействующая этих сил быть равной 2 Н?

3. К телу приложены две силы, равные по модулю 3 Н и 4 Н. Может ли их равнодействующая быть равной 5 Н? Если да, то чему в этом случае равен угол между приложенными силами?

4. К телу приложены три равные по модулю силы по 1 Н каждая. Как они должны быть направлены, чтобы:
а) равнодействующая была равна 1 Н?
б) равнодействующая была равна нулю?
в) равнодействующая была равна 2 Н?

Масса тела

В курсе физики основной школы рассказывалось также об опытах, которые доказывают, что под действием постоянной силы тело движется с постоянным ускорением.

Коэффициент пропорциональности между силой и ускорением характеризует инертные свойства тела и называется массой тела. Чем больше масса тела, тем большую силу надо приложить к телу, чтобы сообщить ему то же ускорение.

Единицей массы в СИ является 1 килограмм (кг). Это масса эталона, хранящегося в Международном бюро мер и весов (Франция). Приближенно можно считать, что одному килограмму равна масса 1 л воды.

Обозначают массу буквой m.

Второй закон Ньютона

Соотношение между равнодействующей всех сил, приложенных к телу, массой тела и его ускорением Ньютон сформулировал как второй из трех основных законов механики.

Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение:

В инерциальной системе отсчета сила является причиной ускорения, поэтому второй закон Ньютона часто записывают так:

Итак, приобретаемое телом ускорение прямо пропорционально равнодействующей приложенных к телу сил, одинаково с ней направлено и обратно пропорционально массе тела.

Заметим, что второй закон Ньютона справедлив только в инерциальных системах отсчета. Напомним: в этих системах отсчета ускорение тела обусловлено только действием на него других тел.

Единицу силы в СИ определяют на основе второго закона Ньютона: сила в 1 ньютон сообщает телу массой 1 кг ускорение 1 м/с 2 . Поэтому 1 Н = 1 кг * м/с 2 .

Сила тяжести

Как вы уже знаете, под действием притяжения Земли все тела падают с одинаковым ускорением – ускорением свободного падения . Силу притяжения, действующую на тело со стороны Земли, называют силой тяжести и обозначают т.

Когда тело свободно падает, на него действует только сила тяжести, поэтому она и является равнодействующей всех приложенных к телу сил. При атом тело движется с ускорением , поэтому из второго закона Ньютона получаем:

5. С какой силой Земля притягивает:
а) килограммовую гирю?
б) человека массой 60 кг?

Сила, скорость и ускорение – кто «третий лишний»?

Неочевидное следствие второго закона Ньютона состоит в том, что он утверждает: направление ускорения тела совпадает с направлением равнодействующей приложенных телу сил. Скорость же вела может быть при этом направлена как угодно!

Поставим опыт

Бросим шарик вниз, затем – вверх, а потом – под углом к горизонту (рис. 13.5)

На шарик во время всего движения действует только направленная вниз сила тяжести. Однако в первом случае (а) скорость шарика совпадает по направлению с этой силой, во втором случае (б) – скорость вначале противоположна силе тяжести, а в третьем (в) – скорость направлена под углом к силе тяжести (например, в верхней точке траектории скорость перпендикулярна силе тяжести).

6. Тело равномерно движется по окружности. Чему равен угол между скоростью тела и равнодействующей?

7. Чему равен угол между скоростью автомобиля и равнодействующей приложенных к нему сил, когда автомобиль:
а) разгоняется на прямой дороге?
б) тормозит на прямой дороге?
в) движется равномерно по дуге окружности?

3. Третий закон ньютона

Поставим опыт

Предложим первокласснику и десятикласснику посоревноваться в перетягивании каната, стоя на скейтбордах: тогда трением между колесами и полом можно пренебречь (схема опыта показана на рисунке 13.6).

Мы увидим, что оба соперника движутся с ускорением. Значит, на каждого из них действу другого. Ускорения соперников направлено противоположно, причем ускорение первоклассника намного больше ускорения десятиклассника.

Точные опыты, подобные описанном выше, показывают, что модули ускорений обратно пропорциональны массам тел :

a 1 /a 2 = m 2 /m 1 .

Поскольку ускорения направлены противоположно,

Согласно второму закону Ньютона m 1 1 = 1 и m 2 2 = 2 , где 1 – сила, действующая на первое тело со стороны второго, а 2 – сила, действующая на второе тело со стороны первого.

Из соотношения (5) следует, что 1 = – 2 . Это и есть третий закон Ньютона.

Тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

Свойстве сил, с которыми тела взаимодействуют друг с другом:
– эти силы обусловлены одним и тем же взаимодействием и поэтому имеют одну и ту же физическую природу;
– эти силы направлены вдоль одной прямой;
– эти силы приложены к разным телам и поэтому не могут уравновешивать друг друга.

Примеры проявления третьего закона Ньютона

Когда камень падает на Землю, на него действует сила тяжести 1 со стороны Земли, а на Землю – сила 2 притяжения со стороны камня (рис. 13.7, для наглядности масштаб не соблюден). Обе эти силы относятся к силам всемирного тяготения.

8. Согласно третьему закону Ньютона F 1 = F 2 . Почему же ускорение камня заметно, а ускорение Земли – нет?

Когда камень лежит на Земле, на него кроме силы тяжести, которую будем обозначать теперь т, действует еще направленная вверх сила давления со стороны опоры (рис. 13.8, а). Она направлена перпендикулярно поверхности опоры, поэтому ее называют силой нормальной реакции (перпендикуляр называют часто нормалью). (Когда тело можно считать материальной точкой, все действующие на него силы желательно изображать на чертежах приложенными в одной точке.)

Когда камень покоится, его ускорение равно нулю. Значит, согласно второму закону Ньютона равнодействующая приложенных к камню сил и т, равна нулю (будем говорить, что в таком случае силы уравновешивают друг друга):

Отсюда следует:

Опора давит на камень силой , направленной вверх, а камень, по третьему закону Ньютона, давит на опору силан , направленной вниз (рис. 13.8, 6). Обе эти силы – силы упругости.

Силу, с которой тело вследствие действия на него силы тяжести давит на горизонтальную опору или растягивает вертикальный поднес, называют весом тела.

Итак, – это вес камня. По третьему закону Ньютона

Из формул (8) и (9) следует:

Итак, вес покоящегося тела равен действующей на это тело силе тяжести. Однако несмотря на это вес и сила тяжести существенно отличаются друг от друга:
– эти силы приложены к разным телам: вес действует на опору или поднес, а сила тяжести – на само тело;
– эти силы имеют разную физическую природу: вес – это сила упругости, а сила тяжести – проявление сил всемирного тяготения.

Кроме того, как мы увидим несколько позже (§ 16), вес может быть не равен силе тяжести и даже быть равным нулю.


Дополнительные вопросы и задания

9. Ускорение тела в некоторой инерциальной системе отсчета равно 3 м/с2 и направлено вдоль оси x. Чему равно ускорение этого тела в инерциальной системе отсчета, движущейся относительно заданной со скоростью 4 м/с, направленной вдоль оси y? Есть ли здесь лишние данные?

10. Брусок массой 0,5 кг соскальзывает с наклонной плоскости с углом наклона 30º. Скорость бруска увеличивается. Ускорение бруска равно 2 м/с 2 . Изобразите на чертеже равнодействующую приложенных к бруску сил. Чему она равна? Есть ли в задаче лишние данные?

11. Зависимость координаты x автомобиля от времени выражается в единицах СИ формулой x = 20 – 10t + t 2 . Ось x направлена вдоль дороги, масса автомобиля 1 т.
а) Чему равна равнодействующая приложенных к автомобилю сил?
б) Как она направлена в начальный момент – в направлении скорости автомобиля или противоположно ей?

12. Автомобиль массой 1 т едет со скоростью 72 км/ч по выпуклому мосту, имеющему форму дуги окружности радиусом 50 м. Сделайте чертеж и ответьте на вопросы.
а) Чему равна и как направлена равнодействующая сил, приложенных к автомобилю в верхней точке моста?
б) Какие силы действуют на автомобиль в этой точке? Как они направлены и чему они равны?
в) Во сколько раз вес автомобиля в верхней точке моста меньше действующей на автомобиль силы тяжести?

«Физика - 10 класс»

Какое явление называют инерцией?
Что называют системой отсчёта?

Закон инерции относится к самому простому случаю движения - движению тела, которое не взаимодействует с другими телами, т. е. движению свободного тела.

Ответить на вопрос, как же движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо поместить тело в условия, при которых влияние внешних взаимодействий можно делать всё меньшим и меньшим, и наблюдать, к чему это ведёт. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к Земле компенсируется действием поверхности, на которую он опирается; на скорость его движения влияет только трение.) При этом легко обнаружить, что, чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, не меняя заметно скорость. На основе подобных наблюдений можно сделать вывод: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу пришёл впервые Галилей.


Первый закон Ньютона:

Существуют системы отсчёта, называемые инерциальными, относительно которых тело движется прямолинейно и равномерно, если на него не действуют другие тела.


Первыи закон, или закон инерции, как его часто называют, фактически был открыт Галилеем, но строгую формулировку дал и включил его в число основных законов механики Исаак Ньютон.

Этот закон, с одной стороны, содержит определение инерциальной системы отсчёта. С другой стороны, он содержит утверждение (которое с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы отсчёта существуют в действительности.


Инерциальные и неинерциальные системы отсчёта


До сих пор систему отсчёта мы связывали с Землёй, т. е. рассматривали движение относительно Земли. В системе отсчёта, связанной с Землёй, ускорение тела определяется только действием на него других тел. Система отсчёта, связанная с Землёй, является инерциальной.

Из формулировки первого закона следует, что если есть одна инерциальная система отсчёта, то любая другая движущаяся относительно неё прямолинейно и равномерно также является инерциальной.

Однако помимо инерциальных систем отсчёта, есть и другие, в которых тело имеет ускорение даже в том случае, когда на него другие тела не действуют.

В качестве примера рассмотрим систему отсчёта, связанную с автобусом. При равномерном движении автобуса пассажир может не держаться за поручень, действие со стороны автобуса компенсируется взаимодействием с Землёй. При резком торможении автобуса стоящие в проходе пассажиры падают вперёд, получая ускорение относительно стенок автобуса (рис. 2.6). Однако это ускорение не вызвано какими-либо новыми воздействиями со стороны Земли или автобуса непосредственно на пассажиров. Относительно Земли пассажиры сохраняют свою постоянную скорость, но автобус начинает двигаться с ускорением, и пассажиры относительно него также движутся с ускорением. Ускорение появляется вследствие того, что движение их рассматривается относительно тела отсчёта (автобуса), движущегося с ускорением.


Рассмотрим маятник, находящийся на вращающемся диске (рис. 2.7). Нить маятника отклонена от вертикали, хотя сам он неподвижен относительно диска. Натяжение нити не может быть скомпенсировано силой притяжения к Земле. Следовательно, отклонение маятника нельзя объяснить только его взаимодействием с телами.

Рассмотрим ещё один маятник, находящийся в неподвижном вагоне. Нить маятника вертикальна (рис. 2.8, а). Шарик взаимодействует с нитью и Землёй, сила натяжения нити равна силе тяжести. С точки зрения пассажира в вагоне и человека, стоящего на перроне, шарик находится в равновесии вследствие того, что сумма сил, действующих на него, равна нулю.

Как только вагон начинает двигаться с ускорением, нить маятника отклоняется (шарик по инерции стремится сохранить состояние покоя). С точки зрения человека, стоящего на перроне, ускорение шарика должно быть равно ускорению вагона, так как нить не разрывается и шарик движется вместе с вагоном. Шарик по-прежнему взаимодействует с теми же телами, сумма сил этого взаимодействия должна быть отлична от нуля и определять ускорение шарика.

С точки зрения пассажира, находящегося в вагоне, шарик неподвижен, следовательно, сумма сил, действующих на шарик, должна быть равна нулю, однако на шарик действуют те же силы - натяжения нити и сила Рис. 2.8 тяжести. Значит, на шарик (рис. 2.8, б) должна действовать сила ин, которая определяется тем, что система отсчёта, связанная с вагоном, неинерциальная. Эту силу называют силой инерции (см. рис. 2.8, б).

В неинерциальных системах отсчёта основное положение механики о том, что ускорение тела вызывается действием на него других тел, не выполняется.

Системы отсчёта, в которых не выполняется первый закон Ньютона, называются неинерциальными .

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.