Виды энергий и их свойства. Понятие энергии. основные виды энергии

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .
Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.
Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.
Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.
Энергию в естествознании в зависимости от природы делят на следующие виды.
Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.
К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.
Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.
Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).
Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).
Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).
Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.
Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.
Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.
Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.
Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.
Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.
Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.
Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.
Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.
В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.
К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).
Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).
Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.
Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:
1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.
2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.
3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Закон сохранения энергии

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.
Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.
Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.
Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.
В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.
Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.
Закон сохранения энергии нашел подтверждение в различных областях – от механики Ньютона до ядерной физики. Причем закон сохранения энергии – это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».
Учитывая вышеизложенное, терминологически правильно было бы говорить не «энергосбережение», так как «сберечь» энергию невозможно, а «эффективное энергоиспользование».
и т.д.................

Это физическая величина, мера разных форм движения и взаимодействия форм материй, их перехода из одних форм в другие. В зависимости от формы движения материи различают такие формы энергии, как механическая, электромагнитная, внутренняя, ядерная и т.д. Но это деление во многом условно. В использование понятия энергии считается целесообразным тогда, когда величина сохраняется при движении, т.е. рассматриваемая система должна быть однородной во времени.

Тепловая энергия представляет собой энергию хаотического движения молекул. В другие виды энергии она превращается с потерями. Электромагнитная - энергия, заключенная в магнитном поле (ее также в зависимости от ситуации делят на электрическую и магнитную). Под гравитационной понимается потенциальная энергия системы частиц (или тел), тяготеющих друг к другу. Ядерная (или атомная) энергия содержится в атомных и выделяется при ядерных реакциях. Эта энергия применяется в атомных электрических станциях для получения тепла (которое используется для обеспечения отопления и электроэнергии), а также в разрушительном ядерном оружии и водородных бомбах. В термодинамике (раздел ) существует понятие внутренней энергии - суммы энергий тепловых движений и молекулярных взаимодействий. Это далеко не весь форм энергии.

С понятием энергии связана теория относительности Эйнштейна, согласно которой есть связь между и массой. Она выражена в формуле E = mc2: энергия системы (E) равна ее массе (m), умноженной на скорость света в квадрате (c2). Под массой принято понимать массу тела в состоянии покоя, а под энергией - внутреннюю энергию системы.

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Источники:

  • Потенциальная и кинетическая энергия

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа- это энергия в действии.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Электрическая энергия является одним из наиболее совершенных видов энергии в виду ряда достоинств.

Электрическая энергия является наиболее чистой формой энергии и может быть получена из большого многообразия первичных источников (например, уголь, нефть, газ, энергия воды и атомная энергия). Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии – возможность получения практически любых количеств энергии как от элемента размером со спичечную головку, так и от турбогенераторов мощностью более 1000 МВт, сравнительная простота ее передачи на расстояние и легкость преобразования в энергию других видов. Основная проблема - это ее хранение.

Она более эффективна с точки зрения использования, чем ископаемое топливо, поскольку имеет широко известные преимущества: обеспечение чистоты, удобство управления, доступность. Электроэнергия может быть использована значительно более эффективно и значительно более целенаправленно, чем энергия сжигаемого топлива. Электрические нагревательные системы характеризуются высокой технической эффективностью, и, несмотря на более высокую стоимость энергии по сравнению с энергией других источников, они более экономичны вследствие более низких эксплуатационных расходов.

Электрическая и тепловая энергия производятся на:

- тепловых электрических станциях на органическом топливе (ТЭС) с использованием в турбинах водяного пара – (паротурбинные установки – ПТУ), продуктов сгорания – (газотурбинные установки – ГТУ), их комбинаций – (парогазовые установки – ПГУ);

- гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива;

- атомных электрических станциях (АЭС), использующих энергию ядерного распада.

Тепловые и атомные электростанции. Типовые схемы ТЭС и АЭС. Паротурбинные конденсационные электростанции и теплоэлектроцентрали (ТЭЦ) с комбинированной выработкой тепла и электрической энергии.

По виду вырабатываемой энергии:

· тепловые электростанции, вырабатывающие только электроэнергию,- конденсационные электростанции (КЭС);

· тепловые электростанции, вырабатывающие электрическую и тепловую энергию,- теплоэлектроцентрали (ТЭЦ).

По виду теплового двигателя:

· электростанции с паровыми турбинами - паротурбинные ТЭС и АЭС;

· электростанции с газовыми турбинами - газотурбинные ТЭС;

· электростанции с парогазовыми установками - парогазовые ТЭС;

Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа).

В машинном зале тепловой электростанции установлен котел с водой.

При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар.

Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор.

Генератор вырабатывает электрический ток.

Электрический ток поступает в электрические сети и по ним поступает на заводы, в школы, дома, больницы.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов.

Повышение напряжения необходимо для передачи электроэнергии на большие расстояния.

Затем необходимо обратное понижение напряжения до уровня, удобного потребителю.

Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов.

А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам.

Градирня - устройство для охлаждения воды на электростанции атмосферным воздухом.

Котел паровой - закрытый агрегат для получения пара на электростанции посредством нагревания воды. Нагрев воды осуществляется посредством сжигания топлива.

ЛЭП - линия электропередачи. Предназначена для передачи электричества. Различают воздушные ЛЭП (провода, протянутые над землей) и подземные (силовые кабели).

Рис.11 – Принципиальные схемы ТЭС (а) и ТЭЦ (б)

В настоящее время на ТЭС и ТЭЦ наряду с паротурбинными установками (ПТУ) получают распространение парогазовые установки (ПГУ), работающие по комбинированной схеме.

В первой ступени ПГУ с газовой турбиной в качестве первичного источника энергии и рабочего тела используют природный газ, а вторичным рабочим телом являются продукты сгорания. Во второй ступени источником энергии служат выхлопные газы турбины, а рабочим телом – пар, генерируемый в парогенераторе с их помощью.

Атомные электроcтанции.

Такие электростанции действуют по такому же принципу, что и ТЭЦ, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана.

Рис. 12. Принципиальная схема АЭС.

По сравнению с тепловыми и гидроэлектростанциями атомные электростанции имеют серьезные преимущества: они требуют малое количество топлива, не нарушают гидрологических режим рек, не выбрасывают в атмосферу загрязняющие ее газы. Основной процесс, идущий на атомной электростанции - управляемое расщепление урана-235, при котором выделяется большое количество тепла. Главная часть атомной электростанции - ядерный реактор, роль которого заключается в поддержании непрерывной реакции расщепления.

Ядерное топливо - руда, содержащая 3% урана 235; ею заполняются длинные стальные трубки - тепловыделяющие элементы (ТВЭЛы). Если много ТВЭЛов разместить поблизости друг от друга, то начнется реакция расщепления. Чтобы реакцию можно было контролировать, между ТВЭЛами вставляют регулирующие стержни; выдвигая и вдвигая их, можно управлять интенсивностью распада урана-235. Комплекс неподвижных ТВЭЛов и подвижных регуляторов и есть ядерные реактор. Тепло, выделяемое реактором, используется для кипячения воды и получения пара, который приводит в движение турбину атомной электростанции, вырабатывающую электричество.

33. Преобразования солнечной энергии в тепловую и электрическую. Ветроэнегетика и гидроэнергетика.

Основным направлением использования солнечной энергии является теплоснабжение. Для прямого преобразования солнечной энергии в тепловую разработаны и широко используются на практике установки солнечного теплоснабжения (СТО) для различных целей (горячее водоснабжение, отопление и кондиционирование воздуха в жилых, общественных, санаторно-курортных зданиях, подогрев воды в плавательных бассейнах и различных процессах сельскохозяйственного производства).

По данным метеорологов в Республике Беларусь 150 дней в году пасмурно, 185 дней - с переменной облачностью и 30 - ясных, а всего число часов солнечного сияния в Беларуси достигает 1200 часов на севере страны и 1300-на юге.

Солнечная электростанция представляет собой сооружение, состоящее из множества солнечных коллекторов, ориентирующихся на Солнце. Каждый коллектор передает солнечную энергию жидкости-теплоносителю, которая, превратившись в пар, от всех коллекторов собирается в центральной энергостанции и поступает на турбину энергогенератора.

Рисунок 13 - Последовательность приемников солнечного излучения

в порядке возрастания их эффективности и стоимости

Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. На рисунке 13 схематически изображены различные варианты приемников солнечной энергии. Опыт эксплуатации этих установок показывает, что в системах солнечного горячего водоснабжения может быть замещено 40-60 % годовой потребности в органическом топливе в зависимости от района расположения при нагреве воды до 40 ... 60 °С.

а) открытый резервуар на поверхности земли; б) открытый резервуар, теплоизолированный от земли; в) черный резервуар; г) черный резервуар с теплоизолированным дном; д) закрытые черные нагреватели,

е) металлические проточные нагреватели со стеклянной крышкой;

ж) металлические проточные нагреватели с двумя стеклянными крышками; з) то же, с селективной поверхностью; и) то же, с вакуумом.

Воздухонагреватель представляет собой приемник, в котором имеется пористая или шероховатая черная поглощающая поверхность, нагревающая поступающий воздух, который затем подается к потребителю.

Солнечный коллектор включает в себя приемник , поглощающий солнечное излучение, и концентратор , представляющий собой оптическую систему, собирающую солнечное излучение и направляющую его на приемник. Концентратор представляет собой чаще всего зеркало параболической формы, в фокусе которого располагается приемник излучения. Он постоянно вращается, обеспечивая ориентацию на Солнце.

Фотоэлектрические преобразователи представляют собой устройства, действие которых основано на использовании фотоэффекта, в результате которого при освещении вещества светом происходит выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость). Методы фотоэлектри-ческого преобразования солнечной энергии в электрическую находит применение для питания потребителей в широком интервале мощностей: от мини-генераторов для часов и калькуляторов мощностью от несколько ватт до центральных электростанций мощностью несколько мегаватт.

Ветроэнергетика представляет собой область техники, использующую энергию ветра для производства энергии, а устройства, преобразующие энергию ветра в полезную механическую, электрическую или тепловую виды энергии, называются ветроэнергетическими установками (ВЭУ), или ветроустановками , и являются автономными

Энергия ветра в механических установках, например на мельницах и в водяных насосах, используется уже несколько столетий. После резкого скачка цен на нефть в 1973 г. интерес к таким установкам резко возрос. Большая часть существующих установок построена в конце 70-х - начале 80-х годов на современном техническом уровне при широком использовании последних достижений аэродинамики, механики, микроэлектроники для контроля и управления ими. Ветроустановки мощностью от нескольких киловатт до нескольких мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Одно из основных условий при проектировании ветроустановок - обеспечение их защиты от разрушений очень сильными случайными порывами ветра. В каждой местности в среднем раз в 50 лет бывают ветры со скоростью, в 5-10 раз превышающей среднюю, поэтому ветроустановки приходиться проектировать с большим запасом прочности. Максимальная проектная мощность ветроустановки определяется для некоторой стандартной скорости ветра, обычно принимаемой равной 12 м/с.

Ветроэнергетическая установка состоит из ветроколеса, генератора электрического тока, сооружения для установки на определенной высоте от земли ветряного колеса, системы управления параметрами генерируемой электроэнергии в зависимости от изменения силы ветра и скорости вращения колеса.

Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярно-вертикально-осевой.

Принцип действия ветроэнергетической установки состоит в следующем. Ветряное колесо, воспринимая на себя энергию ветра, вращается и посредством пары конических шестерен и с помощью длинного вертикального вала передает свою энергию на нижний горизонтальный трансмиссионный вал и далее посредством второй пары конических шестерен и ременной передачи - электрическому генератору или другому механизму.

Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы электрической энергии или быть запараллелены, на случаи безветрия, с электроэнергетическими установками других типов.

Энергетическая программа Республики Беларусь до 2010 г основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективным считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ветроэнергетических установок для водоподъёма, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. т у т. в год.

Гидроэлектростанция.

Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища.

В гидроэлектростанции кинетическая энергия падающей воды используется для производства электроэнергии. Турбина и генератор преобразовывают энергию воды в механическую энергию, а затем - в электроэнергию. Турбины и генераторы установлены либо в самой дамбе, либо рядом с ней.

Рис. 14. Принципиальная схема гидроэлектростанции.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.