Качественное определение белка в моче. Методы определения белка в моче

Метод Брандберга–Робертса–Стольникова относится к полуколичественным методам определения общего белка в моче . В основу метода положена кольцевая проба Геллера , заключающаяся в том, что на границе азотной кислоты и мочи при наличии белка происходит его коагуляция и появляется белое кольцо.

Реактивы

50% раствор азотной кислоты или реактив Ларионовой .
Приготовление реактива Ларионовой: готовят насыщенный раствор хлорида натрия (20 – 30 г соли растворяют в 100 мл воды при подогревании, дают отстояться до охлаждения). Надосадочную жидкость сливают, фильтруют. К 99 мл фильтрата добавляют 1 мл концентрированной азотной кислоты. Вместо азотной кислоты можно добавить 2 мл концентрированной соляной кислоты.

Ход определения

В пробирку наливают 1 – 2 мл азотной кислоты (или реактива Ларионовой), дают кислоте стечь со стенок пробирки (5 – 8 минут), иначе при наслаивании белковой мочи образуется муть вследствие смешения азотной кислоты на стенках пробирки с мочой, что мешает образованию отчетливого кольца. Поэтому следует предварительно приготовить серию пробирок с кислотой. Пипеткой осторожно по стенке пробирки наслаивают такое же количество профильтрованной прозрачной мочи, стараясь не взбалтывать жидкость в пробирке. Появление тонкого белого кольца на границе двух жидкостей между 2-й и 3-й минутой указывает на наличие белка в концентрации примерно 0,033 г/л. Время наслаивания считают за четверть минуты.

Если кольцо появляется раньше 2 мин после наслаивания, мочу следует развести водой и провести повторное наслаивание уже разведенной мочи. Степень разведения мочи подбирают в зависимости от вида кольца, т. е. его ширины, компактности и времени появления. При нитевидном кольце, появившемся раньше 2 мин, мочу разводят в 2 раза, при широком – в 4 раза, при компактном – в 8 раз и т. д. Разведение мочи делают в мерной центрифужной пробирке, наливая мочу до метки 1 мл и доливают водой до той метки, во сколько раз делается разведение. Содержимое пробирки тщательно перемешивают пастеровской пипеткой с баллоном. Если при разведении мочи появляется муть, то смесь нужно вновь отфильтровать и только прозрачный фильтрат наслаивать на азотную кислоту. Концентрацию белка при этом вычисляют путем умножения 0,033 на степень разведения и выражают в граммах на литр (г/л). Подбирают такое разведение мочи, чтобы при наслаивании ее на азотную кислоту кольцо появилось на 2 – 3-й минуте.

В случае, если с неразведенной или разведенной мочой кольцо образуется между 1-й и 4-й минутой, можно пользоваться поправкой Эрлиха-Альтгаузена, для того, чтобы не разводить мочу дополнительно (это экономит время). Авторы предложили определить время появления нитевидного кольца и внести в расчет поправку на время. В этом случае количество белка рассчитывают, умножая 0,033 г/л на степень разведения и на поправку.

При образовании кольца до истечения 1 минуты необходимо сделать одно дробное разведение, а именно в 1,5 раза (две части мочи и 1 часть воды). Это разведение также учитывается при расчете количества белка в моче.

Пример определения общего белка в моче методом Брандберга-Робертса-Стольникова.

При наслоении мочи на реактив сразу образуется широкое кольцо. Разводят мочу в 4 раза (1 часть мочи + 3 части воды), наслаивают; получается сразу нитевидное кольцо. Нужно имеющееся разведение развести еще в 2 раза; при наслаивании этого разведения образуется кольцо через 1,5 минут. Дальше можно не разводить.

Расчет белка: мочу развели в 4 и 2 раза, следовательно, в 8 раз. Количество белка равно 0,033*8*1 1 / 4 = 0,33 г/л

Недостатки метода Брандберга-Робертса-Стольникова:

  • субъективность,
  • трудоемкость,
  • снижение точности определения концентрации белка по мере разведения мочи.

См. также:

Литература:

  • Справочник "Лабораторные методы исследования в клинике" под ред. проф. В. В. Меньшикова. - Москва, "Медицина", 1987 г
  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • А. Я. Альтгаузен, "Клиническая лабораторная диагностика" - Москва, Медгиз, 1959 г.
  • А. Я. Любина, Л. П. Ильичева и соавторы, "Клинические лабораторные исследования", Москва, "Медицина", 1984 г

В состав рабочего места по определению белка в моче входят следующие элементы:

  1. Пробирки химические, агглютинационные.
  2. Набор градуированных пипеток.
  3. Пипетки с узким оттянутым концом.
  4. Спиртовки или газовая горелка.
  5. Черная бумага.
  6. Ледяная уксусная кислота.
  7. Сульфосалициловая кислота.
  8. Концентрированная азотная кислота.
  9. Дистиллированная вода.

Методики определения белка в моче

Все методики, применяющиеся для качественного определения белка в моче, основаны на свертывании белка. Свертывание белка проявляется выраженным в разной степени помутнением (от опалесценции до большой мутности) или выпадением хлопьев.

Качественное определение белка в моче может быть проведено одним из следующих способов:

  1. кипячением с 10% раствором уксусной кислоты;
  2. реакцией с 20% раствором сульфосалициловой кислоты;
  3. реакцией с 50% раствором азотной кислоты (проба Геллера);
  4. реакцией с 1% раствором азотной кислоты в насыщенном растворе поваренной соли (видоизмененная проба Геллера по Ларионовой).

Перед качественным определением белка в моче проводят следующую подготовительную работу:
1. Мутную мочу фильтруют через бумажный фильтр. Если получить прозрачный фильтрат не удается, производят повторное фильтрование через тот же фильтр или же смешивают мочу с небольшим количеством инфузорной земли или талька, после чего ее фильтруют.
2. Если моча имеет щелочную реакцию, ее подкисляют 10% раствором уксусной кислоты до слабокислой реакции под контролем лакмусовой или универсальной индикаторной бумажки.
3. При малом содержании солей (светло-желтая или бледно-желтая моча с малым удельным весом) к каждой
пробе добавляют несколько капель насыщенного раствора поваренной соли, так как недостаток солей обусловливает свертывание белка.
4. Степень помутнения наблюдают с помощью черного фона. В качестве фона используют черный картон или черную бумагу, применяемую в фотографии. Учет реакции на черном фоне позволяет выявить малейшую степень помутнения.

В отдельном штативе располагают пронумерованные пробирки. В них производят одну из описанных ниже реакций.

1. Проба кипячением с 10% раствором уксусной кислоты. Для постановки этой пробы необходим 10% раствор уксусной кислоты, который готовят следующим образом: 10 мл ледяной уксусной кислоты помещают в цилиндр и доливают дистиллированной водой до метки 100 мл.

Техника определения белка. В химическую пробирку помещают 10—12 мл отфильтрованной мочи слабокислой реакции. Затем верхнюю часть пробирки с мочой осторожно нагревают до кипения и добавляют в нее 8—10 капель 10% раствора уксусной кислоты. Пробирку с мочой рассматривают на черном фоне в проходящем свете. При наличии белка в моче появляется мутность разной степени (от опалесценции до большой мутности) или выпадают хлопья. Контролем служит нижняя часть пробирки, не подвергавшаяся нагреванию. Этой пробой обнаруживают количество белка, начиная с 0,015%о (%о — promille).

2. Реакция с 20% раствором сульфосалициловой кислоты. 20 % раствор сульфосалициловой кислоты готовят следующим образом: 20 г сульфосалициловой кислоты растворяют в 70-80 мл дистиллированной воды, переводят в цилиндр емкостью 100 мл и доливают дистиллированной водой до метки. Приготовленный реактив хранят в посуде из темного стекла.

Техника определения белка. В две пробирки одинакового диаметра помещают по 2—3 мл отфильтрованной мочи слабокислой реакции, в одну из пробирок к моче прибавляют 3—4 капли 20% раствора сульфосалициловой кислоты, другая пробирка служит контролем. При наличии белка в пробирке с реактивом появляется мутность или выпадают хлопья свернувшегося белка. В контрольной пробирке жидкость остается прозрачной. Сульфосалициловая кислота наряду с белком сыворотки осаждает альбумозы (пептиды), представляющие собой продукт распада белка. С целью уточнения причины помутнения мочи пробирку с мочой подогревают. Мутность, причиной образования которой оказались сывороточные белки, усиливается, мутность же, обусловленная присутствием альбумоз, исчезает. Эта проба имеет ту же чувствительность, что и предыдущая.

3. Реакция с 50 % раствором азотной кислоты (проба Геллера). 50% раствор азотной кислоты готовят следующим образом: к 50 мл азотной кислоты удельного веса 1,2-1,4 приливают 50 мл дистиллированной воды (разведение 1:1).

Техника определения белка. В узкую небольшую пробирку (тина агглютинационной) наливают 1 мл 50% азотной кислоты. В пипетку с узким оттянутым концом набирают 1 мл отфильтрованной исследуемой мочи, наслаивают на реактив и пробирку переводят в вертикальное положение. При наличии белка на границе жидкостей появляется белое кольцо. Время появления кольца, его свойства зависят от количества белка: если белка мало, то кольцо появляется не сразу, поэтому за его появлением следят в течение 2,5-3 минут. Минимальное количество белка, определяемое этим методом, 0,033°/оо. При меньшем содержании белка в моче кольцо не образуется. Учет результатов реакции производят на черном фоне в проходящем свете.

4. Реакция с 1% раствором азотной кислоты на насыщенном растворе поваренной соли - видоизмененная проба Геллера (по Ларионовой). Для проведения пробы используют 1 % раствор азотной кислоты, приготовленный на насыщенном растворе поваренной соли (реактив Ларионовой). 35 г поваренной соли растворяют в 100 мл дистиллированной поды, раствор фильтруют, к 1 мл концентрированной азотной кислоты удельного веса 1,2-1,4 приливают 99 мл приготовленного насыщенного раствора поваренной соли.

Техника определения белка такая же, как и при реакции с 50% раствором азотной кислоты (проба Геллера), но вместо 1 мл 50% раствора азотной кислоты в пробирку наливают 1 мл реактива Ларионовой и на него наслаивают 1 мл мочи. Появление белого кольца на границе жидкостей указывает на наличие белка в исследуемой моче. Проба по Ларионовой так же чувствительна, как и проба Геллера.

5. Колориметрическая (сухая) проба качественного определения белка. Колориметрическая (сухая) проба качественного определения белка в моче основана на воздействии, которое оказывает белок на цвет индикатора в буферном растворе.

Техника определения белка. Кусочек индикаторной бумаги, предназначенный для определения белка погружают в мочу на короткое время. Пробу считают положительной, если бумажка окрашивается в сине-зеленый цвет.

Количественное определение белка в моче

Количественное определение белка в моче основано на том, что при наслаивании мочи, содержащей белок, на 50% раствор азотной кислоты или реактив Ларионовой на границе двух жидкостей образуется белое кольцо, причем если четкое белое кольцо появляется к 3 минутам, то содержание белка равно 0,033%о или 33 мг в 1000 мл мочи. Появление кольца ранее 3 минут свидетельствует о большем содержании белка в моче.
При количественном определении белка в моче выполняют следующие правила:

  1. Количественное определение белка производят только в тех порциях мочи, где он был обнаружен качественно.
  2. Определение производят с тщательно отфильтрованной мочой.
  3. Точно соблюдают технику наслаивания исследуемой мочи на 50% раствор азотной кислоты или реактив Ларионовой в соотношении реактива с мочой (1:1).
  4. Время появления кольца определяют по секундомеру: при окончательном расчете количества белка учитывают время наслаивания мочи на азотную кислоту, которое равно 15 секундам.
  5. Разведение мочи производят исходя из свойства кольца. При этом каждое последующее разведение мочи готовят из предыдущего.
  6. Определение колец производят на черном фоне.

Наиболее распространены два метода количественно¬го определения белка в моче: метод Робертса - Стольникова - Брандберга и метод С. Л. Эрлиха и А. Я. Альтгаузена.

  1. Метод Робертса-Стольникова-Брандберга. По этому способу количество белка в моче определяют путем разведения ее до тех пор, пока при очередном наслаивании мочи на 50% раствор азотной кислоты или реактив Ларионовой кольцо появится точно к 3 минутам. Расчет количества белка производят, умножая 0,033%о на степень разведения мочи. Полученный результат выражает количество белка в миллиграммах на 1000 мл мочи, т. е. в promille (%о).
  2. Метод С. Л. Эрлиха и А. Я. Альтгаузена. В штатив помещают ряд агглютинационных пробирок, в которые предварительно наливают по 1 мл 50% раствора азотной кислоты или реактива Ларионовой. Исследуемую мочу берут отдельной чистой, сухой пипеткой с узким оттянутым концом и наслаивают на реактив, после чего включают секундомер. За временем появления кольца следят, располагая пробирку на черном фоне. При появлении кольца секундомер выключают.

При наслаивании мочи в зависимости от количества белка может появиться компактное, широкое или нитевидное кольцо. Компактное, широкое кольцо появляется тотчас же после наслаивания мочи на реактив. Нитевидное кольцо может появиться сразу, до истечения одной минуты, или в промежутке от одной до 4 минут.

При появлении нитевидного кольца в пределах от одной до 4 минут производить разведение мочи не нужно!
Для вычисления количества белка в этом случае достачно использовать предложенную авторами таблицу-план (табл. 1).

Пример 1. При наслаивании мочи на реактив нитевидное кольцо образовалось через 2 минуты. Если бы кольцо образовалось к 3 минутам, то количество белка было было бы равно 0,033%о.

В данном же случае кольцо образовалось раньше. Соответственная поправка, согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Это значит, что белка в данной порции мочи будет в 1+1/8 раза больше, чем 0,033°/оо, т. е. 0,033%о X(1+1/8) = 0,037°/оо.

При появлении нитевидного кольца до 1 минуты, т. е. через 40-60 секунд, производят одно разведение мочи в 1,5 раза (2 части мочи + 1 часть воды), а затем вновь наслаивают разведенную мочу на реактив и регистрируют появление кольца. При расчете результатов учитывают, что моча была разведена в 1,5 раза.

Пример 2. После наслаивания разведенной в 1,5 раза мочи нитевидное кольцо появилось к 2 минутам. Если бы кольцо появилось к 3 минутам, то белка было бы 0,033%. Соответственная поправка согласно таблице-плану, для времени в 2 минуты равна 1+1/8. Белка в моче содержится 0,033%оX1,5X(1+1/8) = 0,056%о.

Если нитевидное кольцо появляется сразу, мочу разводят в 2 раза (1 часть мочи + 1 часть воды). Разведенную мочу вновь наслаивают на реактив и отмечают появление кольца по истечении 1 минуты.

Пример 3. При наслаивании разведенной в 2 раза мочи на реактив нитевидное кольцо появилось через 1 минуту 15 секунд. Тогда количество белка в исследуемой моче по аналогии с прежними расчетами будет равно
0,033%оХ2Х(1+3/8) = 0,091%.
В случае появления широкого кольца мочу разводят в 4 раза (1 часть мочи + 3 части воды).
При последующем наслаивании разведенной мочи нитевидное кольцо может образоваться как до, так и по истечении одной минуты. В таких случаях расчет количества белка производят по аналогии с предыдущими примерами, т. е. 0,033% о умножают на степень разведения и на соответственную поправку.

Пример 1. Кольцо после разведения мочи в 4 раза появилось сразу же. Мочу разводят в 2 раза. После наслаивания мочи, разведенной в 8 раз (4X2), нитевидное кольцо образовалось через 1,5 минуты. В таком случае количество белка равно 0,033%оХ8X1,25 = 0,33%о и т. д.
При появлении компактного кольца мочу разводят в 8 раз (1 часть мочи+ 7 частей воды). При последующем наслаивании разведенной мочи на реактив может образоваться либо компактное, либо широкое, либо нитевидное кольцо.

Пример 2. При наслаивании мочи на азотную кислоту тотчас же образовалось компактное кольцо. Мочу разводят в 8 раз (1 часть мочи + 7 частей воды) и вновь производят ее наслаивание. При этом опять получилось компактное кольцо. Тогда мочу разводят еще в 8 раз (для этого в цилиндр или в пробирку берут 1 часть разведенной мочи и прибавляют к ней 7 частей воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось сразу. Мочу разводят в 2 раза (1 часть мочи + 1 часть воды). После очередного наслаивания разведенной мочи нитевидное кольцо образовалось к 2 минутам. Расчет количества белка данной порции мочи производят так: 0,033,%оX8X8X2X(1+1/8) = 4,8%о.

Помимо таблицы-плана, имеется таблица с рассчитанными цифрами белка (табл. 2). Если моча не разведена, то количество белка отыскивают в графе «Цельная неразведенная моча». При разведении мочи в целое число раз (8,4,2) используют табл. 1. При разведении мочи в 1,5 раза используют табл. 2.

Техника пользования таблицей для определения содержания белка в моче

В соответствующих графах таблицы наводят время появления кольца и степень разведения мочи.
Цифра, находящаяся в точке пересечения горизонтальной и вертикальной линий, проведенных от этих двух показателей, указывает на количество белка в исследуемой моче (%о).

Возможно, что при положительной качественной пробе на белок кольцо при наслаивании на 50% раствор азотной кислоты не образуется. Это значит, что в моче белка меньше 0,033%о. В таких случаях количество белка в бланке анализа обозначают термином «следы».

Если белок определен количественно, в бланке анализа мочи отмечают содержание белка в promille, например «белок — 0,66%о».

Помимо количественного определения белка в отдельной порции мочи, рассчитывают суточное его количество в граммах. С этой целью собирают суточную мочу, измеряют ее количество и определяют содержание белка в promille. Затем производят расчет. Например, суточное количество мочи равно 1800 мл, белок - 7°/оо. Значит, белка в суточном количестве мочи содержится: 1,8X7 = 12,6 г.

Цель – определение белка в моче.

Показания – гипертензивные состояния при беременности, заболевания почек у беременной

Противопоказания – нет.

Возможные осложнения – нет

Ресурсы – судно, стерильная баночка, пробирки, 30% сульфосалициловая или 3% уксусная кислота, пипетка, спиртовая горелка.

Алгоритм действия:

1. Объясните беременной о необходимости определения белка в моче.

2. Попросите беременную собрать мочу в стерильную баночку.

3. Проба с сульфосалициловой кислотой: в пробирку налейте 4-5 мл мочи добавьте 6-10 капель кислоты. При наличии белка в моче образуется осадок или муть.

4. Проба с 3% уксусной кислотой: в пробирку налейте 8-10 мл мочи, прокипятите на спиртовой горелке, если в моче содержится белок она помутнеет. К помутневшей моче добавьте несколько капель 3% раствор уксусной кислоты. Если в моче исчезнет муть – проба отрицательная.

ПРИМЕЧАНИЯ Определяется в приемном отделении родовспомогательного учреждения.

Стандарт «Определение даты предполагаемого срока родов».

Цель: оценить практическое умение выпускника приопределении даты предполагаемого срока родов

Показания – каждое обращение в родовспомогательное учреждение беременной.

Противопоказания – нет

Возможные осложнения – нет

Ресурсы – стол, два стула, календарь, акушерский календарь, письменная информация о дате первого дня последней менструации, первой явки в женскую консультацию, дате УЗИ с заключением, дату дородового отпуска

Алгоритм действия:

  1. Представьтесь, объясните женщине значение подсчета предполагаемого срока родов.
  2. Выясните у беременной первый день последней менструации, к этой дате прибавьте 280 дней, или же по формуле Негеле к 1 дню последней менструации прибавьте 7 дней и отнимите 3 месяца, полученная дата является сроком родов по менструации.
  3. Выясните дату первого шевеления плода, к этому дню у первородящей прибавьте 140 дней и у повторнородящей 154 дня, полученная дата является сроком родов по шевелению плода.
  4. По менструальному циклу определите на какой день произошла последняя овуляция и от первого дня последней менструации отсчитайте назад три месяца и прибавляет количество дней до овуляции, получите дату родов.
  5. Подсчитайте срок родов по первой явке в женскую консультацию. Ошибка будет минимальной, если беременная обратилась к врачу во время первых 12 недель беременности.
  6. Определите срок родов по дате дородового отпуска. Срок дородового отпуска начинается с 30 недель беременности. К этой дате прибавляет 10 недель, получает дату родов.
  7. Подсчитайте срок родов по УЗИ, проведенных в женской консультации.

Стандарт «Осмотр наружных половых органов»

Цель: оценить практические умения выпускника при осмотре наружных половых органов беременной

Показания – первичное обращение в родовспомогательное учреждение беременной, поступление в стационар с регулярной родовой деятельностью.

Противопоказания – нет

Возможные осложнения – нет

Ресурсы – фантом женщины, кушетка, одноразовое белье для кушетки

Алгоритм действия:

1. Представьтесь, объясните женщине значение осмотре наружных половых органов, этапы его проведения, получите ее согласие

2. Проведите гигиеническую дезинфекцию рук

3. На обе руки наденьте стерильные перчатки.

4. Произведите осмотр наружных половых органов: оцените тип оволосения, строение больших и малых половых губ, клитора, состояние промежности.

5. Большим и указательным пальцами обеих рук раздвиньте большие половые губы, осмотрите состояние наружного отверстия мочеиспускательного канала, преддверие влагалища, пропальпируйте область бартолиниевых желез (нижняя треть больших половых губ).

6. Снимите однаразовые перчатки опустите в коробку безопасной утилизации.

7. Вымойте руки с мылом.

8. Предоставьте беременной информацию по состоянию наружных половых органов.

9. Сделайте запись в документации.

ПРИМЕЧАНИЕ Осмотр проводится конфиденциально, не унижая достоинство женщины.

Стандарт «Оказание экстренной помощи при эклампсии»

Цель: оценить практические умения выпускника оказание экстренной помощи при эклампсии

Показания – приступ судорог при эклампсии

Противопоказания – нет

Возможные осложнения – повторный приступ судорог, эклампсическая кома.

Ресурсы – муляж женщины, 25% раствор сульфата магнезии, шпатель, языкодержатель, шприц 20 мл, физиологический раствор 500 мл, система для внутривенного вливания, спирт, вата, жгут

Алгоритм действия:

1. При приступах судорог вызовите не отходя от пациентки весь свободный персонал и реанимационную бригаду.

2. Одновременно проведите следующие мероприятия:

· освободите дыхательные пути, открыв рот с помощью шпателя или ложки, обернутую марлей, вытяните язык языкодержателем.

· удалите слюну из полости рта, как только появился вдох, обеспечьте свободный доступ воздуха.

· после остановки судорог внутривенно введите стартовую дозу магнезии сульфата – 25%-20 мл в течение 10-15 минут.

3. Начните внутривенную инфузию 320 мл физиологического раствора с 80 мл – 25% раствором сульфата магнезии

4. Под контролем артериального давления и продолжающейся магнезиальной терапии переложите пациентку на носилки и транспортируйте в реанимационное отделение ближайшего родильного дома.

ПРИМЕЧАНИЕ

При эклампсии родоразрешение должно произойти после стабилизации состояния пациентки, но не позднее 12 часов от начала судорог.

Стандарт «Оказание экстренной помощи при тяжелой преэклампсии».

Цель: оценить практические умения выпускника по оказанию экстренной помощи при тяжелой преэклампсии

Показания – тяжелая преэклампсия

Противопоказания – во время приступа судорог

Возможные осложнения – приступ судорог, эклампсическая кома.

Ресурсы – муляж женщины, 25% раствор сульфата магнезии, шприц 20 мл, физиологический раствор 500 мл, система для внутривенного вливания, спирт, вата, жгут

Алгоритм действия:

1. Поставьте диагноз: «Тяжелая преэклампсия» при наличии одного из этих симптомов: головной боли, боли в эпигастральной области, нарушения зрения, мелькания мушек перед глазами, тошноты, рвоты, на фоне артериальной гипертензии (140/90 мм рт. ст. и выше) и протеинурии.

2. Вызовите не отходя от пациентки весь свободный персонал и реанимационную бригаду.

3. Одновременно проведите следующие мероприятия:

· уложите беременную на ровную поверхность, избегая повреждений и поверните голову пациентки набок.

· внутривенно введите стартовую дозу магнезии сульфата – 25%-20 мл в течение 10-15 минут.

4. Начните внутривенную инфузию 320 мл физиологического раствора с 80 мл – 25% раствором сульфата магнезии.

5. При АД равно и выше 160/100 мм.рт.ст. регулируйте артериальное давление назначением 10 мг нифедипина сублингвально, повторно через 30 минут 10 мг под контролем АД (поддерживать АД на уровне 130/90-140/95 мм.рт.ст.).

6. Под контролем артериального давления и продолжающейся магнезиальной терапии переложите пациентку на носилки и транспортируйте в реанимационное отделение ближайшего родильного дома.

ПРИМЕЧАНИЕ При появлении признаков передозировки сульфата магнезии ввести 10 мл 10% раствора глюконата Са внутривенно в течение 10 минут.

Стандарт «Амниотомия».

Цель – вскрытие плодного пузыря.

Показания – перед родовозбуждением, родостимуляцией, слабости родовой деятельности Противопоказания – угрожающие состояния матери или плода

Возможные осложнения – выпадение мелких частей плода, восходящая инфекция, ранение сосудов плодного пузыря, отслойка нормально расположенной плаценты

Ресурсы – гинекологическое кресло, индивидуальная пеленка, стерильные перчатки, антисептик для обработки наружных половых органов женщины, бранша пулевых щипцов.

Алгоритм действия:

1. Представьтесь.

2. Объясните женщине необходимость проведения данной операции.

3. Возьмите информированное согласие пациентки на процедуру

4. Уложите женщину на гинекологическое кресло, подстелив под неё одноразовую

5. Проведите обработку наружных половых органов женщины антисептическим раствором, на живот женщины положите стерильную пеленку.

6. Проведите гигиеническую дезинфекцию рук.

7. Оденьте одноразовые перчатки на обе руки.

8. Пальцами левой руки разведите половые губы, последовательно введите во влагалище

указательный, затем средний палец правой руки.

9. Браншу пулевых щипцов введите во влагалище между указательным и средним

пальцами.

10. Произведите прокол плодного пузыря.

11. В образовавшееся отверстие в плодном пузыре введите указательный палец, а затем средний палец, отверстие постепенно расширьте, оболочки сместите с головки. Околоплодные воды выпускайте медленно, под контролем пальцев (профилактика выпадение мелких частей, отслойку нормально расположенной плаценты).

13. Выведите пальцы.

14. Снимите перчатки и опустите в коробку безопасной утилизации.

15. Вымойте руки с мылом.

16. Данные запишите в историю родов.

ПРИМЕЧАНИЕ .

При многоводии делают маленькую дырочку и потихоньку выпускают воды. Необходимо контролировать темп излития вод, так как при быстром и резком их излитии возможно выпадение мелких частей плода. После отхождения вод женщине рекомендуется 30 минут полежать.

Страница 52 из 76

В моче здорового ребенка белок содержится в незначительном количестве и обычными качественными пробами не обнаруживается. Количество белка в моче (протеинурия) возрастает при заболеваниях почек, токсикозе, лейкозах, пернициозной анемии, застойных явлениях в почках, после пальпации почек (пальпаторная альбуминурия) и физического переутомления, при эмоциональной перегрузке, лихорадке, переохлаждении и других состояниях.
Качественное определение белка в моче. Для качественного определения белка в моче наиболее широко применяются проба с сульфосалициловой кислотой, проба Геллера с азотной кислотой, проба кипячением и др. При пользовании пробами, основанными на осаждении белков, во избежание ошибок важно соблюдать некоторые общие правила.

  1. Моча должна иметь кислую реакцию. Если реакция исследуемой мочи щелочная, ее слегка подкисляют добавлением уксусной кислоты. Однако количество кислоты не должно быть большим, чтобы не вызвать растворение альбумина.
  2. Моча должна быть прозрачной. При наличии мути ее следует удалить, не вызывая осаждения белков.
  3. Пробу необходимо производить в двух пробирках - опытной и контрольной. При отсутствии контроля можно не заметить легкого помутнения мочи в опытной пробирке.

Проба с сульфосалициловой кислотой - одна из самых чувствительных на присутствие белка в моче. В пробирку наливают 3-5 мл мочи и прибавляют 20 % раствор сульфосалициловой кислоты из расчета 2 капли на 1 мл мочи.
В другой модификации для постановки пробы в пробирку наливают 1 мл мочи и к ней прибавляют 3 мл 1% раствора сульфосалициловой кислоты.

В первом и втором случаях при наличии белка в моче после добавления сульфосалициловой кислоты появляется муть. Результат учитывается по интенсивности помутнения: слабо положительная реакция (опалесценция) обозначается (сл. +), положительная (+), резко положительная.
Проба Геллера проводится следующим образом: на 1-2 мл 30 % раствора азотной кислоты с относительной плотностью 1,20 осторожно (не смешивая) наслаивают несколько миллилитров мочи. При наличии в моче 0,033 г/л белка и более на границе обеих жидкостей образуется белое кольцо, что оценивается как положительная проба. При содержании в моче большого количества уратов также может образоваться белое кольцо, но оно располагается чуть выше границы между жидкостями. При легком нагревании уратное кольцо исчезает.
Проба кипячением дает надежные результаты, но только если моча имеет pH 5,6. Эту пробу лучше проводить в модификации Рупперта с ацетатным буфером Банге, в который входит 56,5 мл ледяной уксусной кислоты, 118 г кристаллического уксуснокислого натрия, растворенных в 1 л воды. К 1-2 мл буфера Банге добавляют 5 мл мочи и кипятят 1/2 мин. При наличии белка в моче образуется помутнение.
Количественное определение белка в моче. Для количественного определения белка в моче наиболее часто используются метод Эсбаха, метод Брандберга - Робертс - Стольникова, биуретовый метод Сольса и др.
Метод Брандберга - Робертс - Стольникова основан на качественной пробе Геллера и позволяет определить наличие белка в моче от 0,033 г/л и выше. Готовится ряд пробирок. Моча, содержащая белок, разводится физиологическим раствором или водой до тех пор, пока не перестанет образовываться белое кольцо на границе жидкостей (реактива Робертс - Стольникова и мочи). Кольцо на границе двух жидкостей между второй и третьей минутами появляется при содержании белка 0,033 г/л. Если кольцо появляется раньше чем через несколько мин, мочу разводят водой. Наибольшее разведение мочи, в котором образуется кольцо, содержит 0,033 г/л белка. Степень разведения мочи в последней пробирке умножают на 0,033 г/л и получают концентрацию белка в цельной моче.

Протеинурия . При заболеваниях почек она обусловлена увеличенной проницаемостью почечного фильтра. Белок в мочу может попасть и иным путем (из слизистых мочевых путей, влагалища, предстательной железы и пр.) - внепочечная протеинурия. Почечные протеинурии делят на органические и функциональные. Органическая протеинурия связана с поражением паренхимы почек, функциональная - с вазомоторными нарушениями. Одним из видов функциональной протеинурии является ортостатическая (лордотическая, перемежающая, постуральная, циклическая) альбуминурия. Предполагают, что при выраженном лордозе создается положение, при котором нижняя полая вена печенью прижимается к позвоночнику, а это ведет к застою в почечных венах и застойной альбуминурии. Электронно-микроскопическими исследованиями установлено, что при ортостатической альбуминурии имеются морфологические признаки воспалительного процесса в почечных клубочках.

Наши многолетние наблюдения показывают, что ортостатическая альбуминурия часто обусловлена аномалиями почек или их ненормальным расположением В связи с этим мы рекомендуем пользоваться ортостатической пробой как скринирующим тестом. После выявления ортостатической альбуминурии с помощью этой пробы мы обычно производим экскреторную урографию для исключения аномалий развития системы мочеотделения.
Ортостатическая проба . Накануне проведения пробы, вечером, примерно за час до сна, ребенок должен опорожнить мочевой пузырь. Утром, встав с постели, он сразу же мочится, и эту мочу собирают в отдельную посуду, отмечая как порцию до нагрузки. Затем ребенку предлагают стать на колени на полумягкий стул с палкой за спиной, обхватив ее локтевыми сгибами. В таком положении ребенок должен находиться 15-20 мин, после чего он опорожняет мочевой пузырь и собранную мочу отмечают как порцию после нагрузки. Белок исследуют в порциях мочи, полученных до и после нагрузки. Обнаружение или увеличение в 2-3 и более раз содержания белка во второй порции (полученной после нагрузки) по сравнению с первой оценивают как положительную ортостатическую пробу.
Определение белковых фракций в моче. Проводится ничные элементы. При гломерулонефрите, туберкулезе, поликистозе почек, опухоли почек, геморрагическом васкулите, коллагенозах, воспалении мочевого пузыря и других заболеваниях эритроцитов в моче может быть значительное количество. Различают макро- и микрогематурию. При макрогематурии уже макроскопически можно отметить, что цвет мочи изменен. Из-за присутствия в моче большого количества эритроцитов она становится красной или «цвета мясных помоев». При микрогематурии эритроциты обнаруживаются только путем микроскопии осадка.
Проникновение эритроцитов в мочу при гломерулонефритах, интоксикациях обусловлено повышенной проницаемостью клубочковых капилляров и их разрывами. При воспалительных заболеваниях мочевых путей, камнях лоханок, мочеточников, мочевого пузыря эритроциты попадают в мочу из поврежденных слизистых оболочек. При сборе мочи порциями (двух- и трехстаканной пробах) во время одного мочевыделения можно с большой вероятностью выяснить, из какого сегмента мочевыводящей системы исходит гематурия. Так, при гематурии из уретры могут быть сгустки крови в первой порции мочи. Если гематурия обусловлена острым воспалением слизистой оболочки, камнем или другими заболеваниями мочевого пузыря, больше крови будет выделяться с последней порцией мочи. При гематурии, связанной с повреждением мочеточника, иногда обнаруживаются фибринные слепки, по форме соответствующие просвету мочеточника. При диффузных заболеваниях почек гематурия окрашивает выделяемую мочу равномерно.
Лейкоциты . В моче здорового ребенка они могут быть единичными в поле зрения. Обнаружение 5-7 лейкоцитов в каждом поле зрения говорит о воспалительном процессе в мочевыводящих путях. Однако при этом всегда должно быть исключено попадание лейкоцитов в мочу из наружных половых органов, что бывает при фимозе, баланите и баланопостите у мальчиков и вульвовагините у девочек. Двух- и трехстаканная пробы широко используются при лейкоцитуриях.
Цилиндры . В моче они могут быть в виде гиалиновых, зернистых, эпителиальных и восковидных слепков. Все они могут образовываться при патологических состояниях в почках. Цилиндры в моче здоровых детей встречаются редко. Часто они обнаруживаются при количественных методах исследования мочевого осадка. Как правило, это гиалиновые цилиндры, представляющие собой свернувшийся в просвете канальцев белок. Эпителиальные цилиндры свидетельствуют о поражении почечной паренхимы и состоят из склеившихся эпителиальных клеток почечных канальцев. При более выраженном дистрофическом процессе в почках появляются зернистые и восковидные цилиндры. Это слепки отторгнувшихся клеток канальцевого эпителия, который подвергся жировой дегенерации. Кроме того, в осадке мочи можно обнаружить цилиндры, образовавшиеся из форменных элементов, гемоглобина, метгемоглобина крови. Основу таких цилиндров обычно составляет белок, на который наслаиваются другие элементы.
Цилиндроиды - это похожие на гиалиновые цилиндры образования, состоящие из кристаллов солей мочекислого аммония, слизи, лейкоцитов, бактерий. Обнаруживаются цилиндроиды в фазе выздоровления при остром гломерулонефрите. От гиалиновых цилиндров они отличаются неоднородностью структуры.
Неорганический осадок. В неорганическом осадке у детей чаще встречаются ураты, оксалаты, фосфаты, кристаллы мочевой кислоты. Избыточное выделение их с мочой может привести к образованию в мочевых путях камней.
Уратурия - повышенное выделение с мочой мочекислых солей. Наблюдается в первые дни жизни новорожденных. Из-за значительного количества уратов моча новорожденных может иметь кирпично-красный цвет. Большой распад клеточных элементов у новорожденных часто приводит к образованию мочекислого инфаркта, который к концу первой недели жизни проходит, так как соли ураты удаляются с увеличивающимся диурезом. Уратурия у детей старшего возраста может быть связана с употреблением в пищу большого количества мяса, при мышечном переутомлении, лихорадочных состояниях. Гиперуратурия может обусловливаться наследственной гиперурикемией, что особенно выражено при синдроме Леша-Нихана.
Оксалатурия - повышенное выделение с мочой щавелевокислого кальция, может быть связано с употреблением пищи, богатой щавелевой кислотой. К продуктам такого рода относятся щавель, шпинат, томаты, зеленый горошек, фасоль, редис, чай, кофе и др. Причиной оксалатурии бывает и патологическим процесс в организме ребенка, сопровождающийся распадом тканей (дистрофия, туберкулез, диабет, бронхоэктатическая болезнь, лейкоз и др.). Оксалатурия известна также как наследственное заболевание, часто осложняющееся почечнокаменной болезнью и хроническим пиелонефритом. При выраженной оксалатурии содержание оксалатов в суточной моче в 3-4 раза и более превышает допустимую величину (норма 8-10 мг%).
Фосфатурия - увеличенное выведение с мочой солей фосфатов, выпадающих в осадок в щелочной моче. Наблюдается при приеме в пищу продуктов растительного происхождения (овощей, фруктов и др.), а также при воспалительном процессе в слизистой мочевых путей, когда происходит бактериальное брожение и ощелачивание мочи. Фосфатурия может явиться причиной образования камней мочевого пузыря.

Небольшие количества белка обнаруживаются в суточной моче у здоровых лиц. Однако такие небольшие концентрации его не удается выявить с помощью обычных методов исследования. Выделение более значительных количеств белка, при которых обычные качественные пробы на белок в моче становятся положительными, называются протеинурией. Различают почечную (истинную) и внепочечную (ложную) протеинурию. При почечной протеинурии белок в мочу проникает непосредственно из крови вследствие увеличения фильтрации его клубочками почки или снижения канальцевой реабсорбции.

Почечная (истинная) протеинурия

Почечная (истинная) протеинурия бывает функциональной и органической. Среди функциональной почечной протеинурии наиболее часто наблюдаются следующие ее виды:

Физиологическая протеинурия новорожденных, которая исчезает на 4— 10-й день после рождения, а у недоношенных несколько позже;
- ортостатическая альбуминурия, которая характерна для детей в возрасте 7—18 лет и появляется только в вертикальном положении тела;
- транзиторная (инсультная) альбуминурия, причиной которой могут быть различные заболевания органов пищеварения, тяжелая анемия, ожоги, травмы или физиологические факторы: тяжелая физическая нагрузка, переохлаждение, сильные эмоции, обильная, богатая белком пища и др.

Органическая (почечная) протеинурия наблюдается вследствие прохождения белка из крови через поврежденные участки эндотелия почечных клубочков при заболеваниях почек (гломерулонефрит, нефроз, нефросклероз, амилоидоз, нефропатия беременных), расстройствах почечной гемодинамики (почечная венная гипертензия, гипоксия), трофических и токсических (в том числе лекарственных) воздействиях на стенки капилляров клубочков.

Внепочечная (ложная) протеинурия

Внепочечная (ложная) протеинурия, при которой источником белка в моче является примесь лейкоцитов, эритроцитов, бактерий, клеток уротелия. наблюдается при урологических заболеваниях (мочекаменная болезнь, туберкулез почек, опухоли почки и мочевых путей и др.).

Определение белка в моче

Большинство качественных и количественных методов определения белка в моче основаны на его коагуляции в объеме мочи или на границе сред (мочи и кислоты).

Среди качественных методов определения бедка в моче наибольшее распространение получили унифицированная проба с сульфосалициловой кислотой и кольцевая проба Геллера.

Унифицированная проба с сульфасалициловой кислотой проводится следующим образом. В 2 пробирки наливают по 3 мл профильтрованной мочи. В одну из них прибавляют 6—8 капель 20 % раствора сульфасалициловой кислоты. На темном фоне сравнивают обе пробирки. Помутнение мочи в пробирке с сульфасалициловой кислотой указывает на наличие белка. Перед исследованием необходимо определить реакцию мочи, и если она щелочная, то подкислить 2—3 каплями 10 % раствора уксусной кислоты.

Проба Геллера основана на том, что при наличии белка в моче на границе азотной кислоты и мочи происходит его коагуляция и появляется белое кольцо. В пробирку наливают 1—2 мл 30 % раствора азотной кислоты и осторожно по стенке пробирки наслаивают точно такое же количество профильтрованной мочи. Появление белого кольца на границе двух жидкостей указывает на наличие белка в моче. Следует помнить, что иногда белое кольцо образуется при наличии большого количества уратов, но в отличие от белкового кольца оно появляется несколько выше границы между двумя жидкостями и растворяется при нагревании [Плетнева Н.Г., 1987].

Из количественных методов наиболее часто применяются:

1) унифицированный метод Брандберга—Робертса—Стольникова, в основу которого положена кольцевая проба Геллера;
2) фотоэлектроколориметрический метод количественного определения белка в моче по помутнению, образующемуся при добавлении сульфасалициловой кислоты;
3) биуретовый метод.

Выявление белка в моче упрощенным ускоренным методом проводят колориметрическим методом с помощью индикаторной бумаги, которую выпускают фирмы «Lachema» (Словакия), «Albuphan», «Ames» (Англия), «Albustix», «Boehringer» (Германия), «Comburtest» и др. Метод заключается в погружении в мочу специальной бумажной полоски, пропитанной тетрабромфеноловым синим и цитратным буфером, которая меняет свой цвет от желтого до синего в зависимости от содержания белка в моче. Ориентировочно концентрацию белка в исследуемой моче определяют с помощью стандартной шкалы. Для получения правильных результатов необходимо соблюдать следующие условия. рН мочи должна быть в пределах 3,0—3,5; при слишком щелочной моче (рН 6,5) будет получен ложноположительный результат, а при слишком кислой моче (рН 3,0) — ложноотрицательный.

Бумага должна находиться в контакте с исследуемой мочой не дольше, чем указано в инструкции, в противном случае тест даст ложноположительную реакцию. Последнюю также наблюдают и при содержании в моче большого количества слизи. Чувствительность различных видов и серий бумаги может быть различной, поэтому к количественной оценке белка в моче этим методом следует относиться осторожно. Определение его количества в суточной моче при помощи индикаторной бумаги невозможно [Плетнева Н.Г., 1987]

Определение суточной протеинурии

Существует несколько способов определения количества белка, выделившегося с мочой за сутки. Наиболее простым является метод Брандберга —Робертса—Стольникова.

Методика. 5-10 мл тщательно перемешанной суточной мочи наливают в пробирку и осторожно по стенкам ее добавляют 30 % раствор азотной кислоты. При наличии белка в моче в количестве 0,033 % (т.е. 33 мг на 1 л мочи) через 2-3 мин появляется тонкое, но четко видимое белое кольцо. При меньшей его концентрации проба отрицательная. При большем содержании белка в моче его количество определяют путем многократных разведений мочи дистиллированной водой до тех пор, пока не перестанет образовываться кольцо. В последней пробирке, в которой еще видно кольцо, концентрация белка будет составлять 0,033 %. Умножив 0,033 на степень разведения мочи, определяют содержание белка в 1 л неразведенной мочи в граммах. Затем рассчитывают содержание белка в суточной моче по формуле:

К=(х·V)/1000

Где К — количество белка в суточной моче (г); х — количество белка в 1 л мочи (г); V — количество мочи, выделенное за сутки (мл).

В норме в течение суток с мочой выделяется от 27 до 150 мг (в среднем 40—80 мг) белка.

Указанная проба позволяет определить в моче только мелкодисперсные белки (альбумины). Более точные количественные методы (колориметрический метод Кьельдаля и др.) довольно сложны и требуют специальной аппаратуры.

При почечной протеинурии с мочой выделяются не только альбумины, но и другие виды белка. Нормальная протеинограмма (по Зейцу и соавт., 1953) имеет следующее процентное содержание: альбуминов — 20 %, α 1 -глобулинов — 12 %, α 2 -глобулинов — 17 %, γ-глобулинов — 43 % и β-глобулинов — 8 %. Отношение альбуминов к глобулинам изменяется при различных заболеваниях почек, т.е. нарушается количественное соотношение между белковыми фракциями.

Наиболее распространенными методами фракционирования уропротеинов являются следующие: высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические методы (реакция радиальной иммунодиффузии по Манчини, иммуноэлектрофоретический анализ, преципитационный иммуноэлектрофорез), хроматография, гель-фильтрация, а также ультрацентрифугирование.

В связи с внедрением методов фракционирования уропротеинов, основанных на изучении электрофоретической подвижности, вариабильности молекулярной массы, размеров и формы молекул уропротеинов, появилась возможность выделять характерные для того или иного заболевания типы протеинурии, изучать клиренсы индивидуальных плазменных белков. К настоящему времени в моче идентифицировано свыше 40 плазменных белков, В том числе в нормальной моче 31 плазменный белок .

Селективная протеинурия

В последние годы появилось понятие селективности протеинурии. В 1955 г. Hardwicke и Squire сформулировали понятие «селективная» и «неселективная» протеинурия, определив, что фильтрация плазменных белков в мочу подчиняется определенной закономерности: чем больше молекулярная масса белка, экскретируемого в мочу, тем меньше его клиренс и тем ниже концентрация его в окончательной моче. Протеинурия, соответствующая этой закономерности, является селективной в отличие от неселективной, для которой характерным является извращение выведенной закономерности.

Обнаружение в моче белков с относительно большой молекулярной массой свидетельствует об отсутствии избирательности почечного фильтра и выраженном его поражении. В этих случаях говорят о низкой селективности протеинурии. Поэтому в настоящее время широкое распространение получило определение белковых фракций мочи с использованием методов электрофореза в крахмальном и полиакриламидном геле. По результатам этих методов исследования можно судить о селективности протеинурии.

По данным В.С.Махлиной (1975), наиболее оправданным является определение селективности протеинурии путем сравнения клиренсов 6—7 индивидуальных белков плазмы крови (альбумина, транеферрина, α 2 - макроглобулина, IgA, IgG, IgM) с использованием точных и специфичных количественных иммунологических методов реакции радиальной иммунодиффузии по Манчини, иммуноэлектрофоретического анализа и преципитального иммуноэлектрофореза. Степень селективности протеинурии определяют по индексу селективности, представляющего собой отношение сравниваемого и эталонного белков (альбумина).

Изучение клиренсов индивидуальных плазменных белков позволяет получить достоверные сведения о состоянии фильтрационных базальных мембран клубочков почки. Связь между характером экскретируемых в мочу белков и изменениями базальных мембран клубочков настолько выражена и постоянна, что по уропротеинограмме можно косвенно судить о патофизиологических изменениях в клубочках почек. В норме средний размер пор гломерулярной базальной мембраны составляет 2,9—4 А° НМ, которые могут пропускать белки, имеющие молекулярную массу до 10 4 (миоглобулин, кислый α 1 - гликопротеин, легкие цепи иммуноглобулинов, Fc и Fab — фрагменты IgG, альбумин и трансферрин).

При гломерулонефрите, нефротическом синдроме размеры пор в базальных мембранах клубочков увеличиваются, в связи с чем базальная мембрана становится проницаемой для белковых молекул большого размера и массы (церулоплазмин, гаптоглобин, IgG, IgA и др.). При крайней степени повреждения клубочков почек в моче появляются гигантские молекулы белков плазмы крови (α 2 -макроглобулин, IgM и β 2 -липопротеин).

Определяя белковый спектр мочи, можно сделать заключение о преимущественном поражении тех или иных участков нефрона. Для гломерулонефрита с преимущественным поражением гломерулярных базальных мембран характерно наличие в моче крупно- и среднемолекулярных белков. Для пиелонефрита с преимущественным поражением базальных мембран канальцев характерны отсутствие крупномолекулярных и наличие повышенных количеств средне- и низкомолекулярных белков.

β 2 -Микроглобулин

Помимо общеизвестных белков, таких как альбумин, иммуноглобулины, липопротеины. фибриноген, трансферрин, в моче содержатся плазменные белки-микропротеины, среди которых клинический интерес представляет β 2 -микроглобулин, открытый Berggard и Bearn в 1968 г. Имея низкую молекулярную массу (относительная молекулярная масса 1800), он свободно проходит через клубочки почки и почти полностью реабсорбируется в проксимальных канальцах. Это позволяет использовать количественное определение β 2 -микроглобулина в крови и моче для определения клубочковой фильтрации и способности почек к резорбции протеинов в проксимальных канальцах.

Концентрацию этого белка в плазме крови и моче определяют радиоиммунологическим методом с помощью стандартного набора «Phade-bas β 2 -mikroiest» (фирма «Pharmaсia», Швеция). В сыворотке крови здоровых людей содержится в среднем 1,7 мг/л (колебания от 0,6 до 3 мг/л), в моче — в среднем 81 мкг/л (максимально 250 мкг/л) β 2 -микроглобулина. Превышение его в моче свыше 1000 мкг/л — явление патологическое. Содержание β 2 -микроглобулина в крови увеличивается при заболеваниях, сопровождающихся нарушением клубочковой фильтрации, в частности при остром и хроническом гломерулонефрите, поликистозе почек, нефросклерозе, диабетической нефропатии, острой почечной недостаточности.

Концентрация β 2 -микроглобулина в моче повышается при заболеваниях, сопровождающихся нарушением реабсорбционной функции канальцев, что приводит к увеличению экскреции его с мочой в 10—50 раз, в частности, при пиелонефрите, ХПН, гнойной интоксикации и др. Характерно, что при цистите в отличие от пиелонефрита не наблюдается увеличения концентрации β 2 -микроглобулина в моче, что может быть использовано для дифференциальной диагностики этих заболеваний. Однако при интерпретации результатов исследования надо учитывать, что любое повышение температуры всегда сопровождается увеличением экскреции β 2 -микроглобулина с мочой.

Средние молекулы крови и мочи

Средние молекулы (СМ), иначе называемые белковыми токсинами, представляют собой вещества с молекулярной массой 500—5000 дальтон. Физическая структура их неизвестна. В состав СМ входят по меньшей мере 30 пептидов: окситоцин, вазопрессин, ангиотензин, глюкагон, адренокортикотропный гормон (АКТГ) и др. Избыточное накопление СМ наблюдается при снижении функции почек и содержании в крови большого количества деформированных белков и их метаболитов. Они обладают разнообразным биологическим действием и нейротоксичны, вызывают вторичную иммунодепрессию, вторичную анемию, угнетают биосинтез белка и эритропоэз, тормозят активность многих ферментов, нарушают течение фаз воспалительного процесса.

Уровень СМ в крови и моче определяют скрининговым тестом, а также путем спектрофотометрии в ультрафиолетовой зоне по длине волны 254 и 280 мм на спектрофотометре ДИ-8Б, а также динамической спектрофотометрии с компьютерной обработкой в диапазоне волн 220—335 нм на том же спектрометре фирмы Beckman. За норму принимают содержание СМ в крови, равное 0,24 ± 0,02 усл. ед., а в моче — 0,312 ± 0,09 усл. ед.
Будучи нормальными продуктами жизнедеятельности организма, они удаляются из него в норме ночками путем гломерулярной фильтрации на 0,5 %; 5 % их утилизируется другим путем. Все фракции СМ подвергаются канальцевой реабсорбции.

Неплазменные (тканевые) уропротеины

Кроме белков плазмы крови, в моче могут быть неплазменные (тканевые) протеины. По данным Buxbaum и Franklin (1970), неплазменные белки составляют приблизительно 2/3 всех биоколлоидов мочи и значительную часть уропротеинов при патологической протеинурии. Тканевые белки попадают в мочу непосредственно из почек или органов, анатомически связанных с мочевыми путями, или попадают из других органов и тканей в кровь, а из нее через базальные мембраны клубочков почки — в мочу. В последнем случае экскреция в мочу тканевых протеинов происходит аналогично выведению плазменных белков различной молекулярной массы. Состав неплазменных уропротеинов чрезвычайно разнообразен. Среди них гликопротеины, гормоны, антигены, ферменты (энзимы).

Тканевые протеины в моче выявляют с помощью обычных методов белковой химии (ультрацентрифугирование, гель-хроматография, различные варианты электрофореза), специфических реакций на ферменты и гормоны и иммунологических методов. Последние позволяют также определить концентрацию неплазменного уропротеина в моче и в ряде случаев определить тканевые структуры, ставшие источником его появления. Основным методом выявления в моче неплазменного белка является иммунодиффузионный анализ с антисывороткой, полученной иммунизацией экспериментальных животных мочой человека и истощенной (адсорбированной) в последующем белками плазмы крови.

Исследование ферментов в крови и моче

При патологическом процессе наблюдаются глубокие нарушения жизнедеятельности клеток, сопровождающиеся выходом внутриклеточных ферментов в жидкостные среды организма. Энзимодиагностика базируется на определении ряда ферментов, выделившихся из клеток пораженных органов и не свойственных сыворотке крови.
Исследования нефрона человека и животных показали, что в отдельных его частях имеется высокая ферментативная дифференциация, тесно связанная с функциями, которые выполняет каждый отдел. В клубочках почки содержится относительно небольшое количество различных энзимов.

Клетки почечных канальцев, особенно проксимальных отделов, содержат максимальное количество энзимов. Высокая их активность наблюдается в петле Генле, прямых канальцах и собирательных трубочках. Изменения активности отдельных энзимов при различных заболеваниях почек зависят от характера, остроты и локализации процесса. Они наблюдаются до появления морфологических изменений в почках. Поскольку содержание различных ферментов четко локализовано в нефроне, определение того или иного фермента в моче может способствовать топической диагностике патологического процесса в почках (клубочки, канальцы, корковый или мозговой слой), дифференциальной диагностике почечных заболеваний и определению динамики (затухание и обострение) процесса в почечной паренхиме.

Дли дифференциальной диагностики заболеваний органов мочеполовой системы применяют определение активности в крови и моче следующих ферментов: лактатдегидрогеназы (ЛДГ), лейцинаминопептидазы (ЛАП), кислой фосфатазы (КФ), щелочной фосфатазы (ЩФ), β-глюкуронидазы, глютамино-щавелевоуксусной трансаминазы (ГЩТ), альдолазы, трансамидиназы и др. Активность ферментов в сыворотке крови и в моче определяют с помощью биохимических, спектрофотометрических, хроматографических, флуориметрических и хемилюминесцентных методов.

Энзимурия при заболеваниях почек более выражена и закономерна, чем энзимемия. Она особенно сильно выражена в острой стадии заболевания (острый пиелонефрит, травма, распад опухоли, инфаркт почки и т.д.). При этих заболеваниях обнаруживается высокая активность трансамидиназы, ЛДГ, ЩФ и КФ, гиалуронидазы, ЛАП, а также таких неспецифических энзимов, как ГЩТ, каталаза [Полянцева Л.Р., 1972].

Селективная локализация ферментов в нефроне при обнаружении ЛАП и ЩФ в моче позволяет с уверенностью говорить об острых и хронических заболеваниях почек (острая почечная недостаточность, некроз почечных канальцев, хронический гломерулонефрит) [Шеметов В.Д., 1968]. По данным А.А.Карелина и Л.Р.Полянцевой (1965), трансамидиназа содержится лишь в двух органах — почке и поджелудочной железе. Она является митохондриальным ферментом почек и в норме в крови и моче отсутствует. При различных заболеваниях почек трансамидиназа появляется в крови и в моче, а при поражении поджелудочной железы — только в крови.

Дифференциальным тестом в диагностике гломерулонефрита и пиелонефрита Krotkiewski (1963) считает активность ЩФ в моче, повышение которой более характерно для пиелонефрита и диабетического гломерулосклероза, чем для острого и хронического нефрита. Нарастающая в динамике амилаземия при одновременном снижении амилазурии может указывать на нефросклероз и сморщивание почки, ЛАП имеет наибольшее значение при патологических изменениях в клубочках и извитых канальцах почки, поскольку содержание ее в этих отделах нефрона более высокое [Шепотиновский В.П. и др., 1980]. Для диагностики волчаночного нефрита рекомендуется определение β-глюкуронидазы и КФ [Приваленко М.Н. и др., 1974].

При оценке роли энзимурии в диагностике заболеваний почек следует учитывать следующие положения. Энзимы, будучи по своей природе белками, при малой молекулярной массе могут проходить через неповрежденные клубочки, определяя так называемую физиологическую энзимурию. Среди этих энзимов постоянно определяются в моче α-амилаза (относительная молекулярная масса 45 ООО) и уропепсин (относительная молекулярная масса 38000).

Наряду с низкомолекулярными энзимами в моче здоровых лиц могут быть обнаружены в небольшой концентрации и другие энзимы: ЛДГ, аспартат- и аланинаминотрансферазы, ЩФ и КФ, мальтаза, альдолаза, липаза, различные протеазы и пептидазы, сульфатаза, каталаза, рибонуклеаза, пероксидаза .

Высокомолекулярные энзимы с относительной молекулярной массой больше 70000-100000, по мнению Richterich (1958) и Hess (1962), могут проникать в мочу лишь при нарушении проницаемости клубочкового фильтра. Нормальное содержание ферментов в моче не позволяет исключить патологический процесс в почке при окклюзии мочеточника. При эпзимурии возможен выход энзимов не только из самих почек, но и из других паренхиматозных органов, клеток слизистых оболочек мочевых путей, предстательной железы, а также форменных элементов мочи при гематурии или лейкоцитурии.

Большинство энзимов неспецифично по отношению к почке, поэтому откуда происходят энзимы, обнаруженные в моче здоровых и больных, установить трудно. Однако степень энзимурии даже дли неспецифичных энзимов при поражении почек бывает выше нормы или той, которая наблюдается при заболеваниях других органов. Более ценную информацию может дать комплексное исследование в динамике ряда ферментов, особенно органоспецифичных, таких как трансаминаза.

В решении вопроса о почечном происхождении энзима в моче помогает исследование изоэнзимов с выявлением фракций, типичных для изучаемого органа. Изоэнзимы — это энзимы, изогенные по действию (катализируют одну и ту же реакцию), но гетерогенные по химической структуре и другим свойствам. Каждая ткань имеет характерный для нее изоэнзимный спектр. Ценными методами разделения изоэнзимов являются электрофорез в крахмальном и полиакриламидном геле, а также ионообменная хроматография.

Белок Бенс-Джонса

При миеломной болезни и макроглобулинемии Вальденстрема в моче обнаруживают белок Бенс-Джонса. Метод обнаружения названного белка в моче основан на реакции термопреципитации. Применявшиеся ранее методы, с помощью которых оценивают растворение этого белка при температуре 100 °С и повторное осаждение при последующем охлаждении, ненадежны, так как не все белковые тела Бенс-Джонса обладают соответствующими свойствами.

Более достоверно выявление этого парапротеина путем осаждения его при температуре 40 -60 °С. Однако и в этих условиях осаждения может не произойти в слишком кислой (рН < 3,0—3,5) или слишком щелочной (рН > 6,5) моче, при низкой ОПМ и низкой концентрации белка Бенс-Джонса. Наиболее благоприятные условия для его осаждения обеспечивает методика, предложенная Patnem: 4 мл профильтрованной мочи смешивают с 1 мл 2 М ацетатного буфера рН 4,9 и согревают 15 мин на водяной бане при температуре 56 °С. При наличии белка Бенс-Джонса в течение первых 2 мин появляется выраженный осадок.

При концентрации белка Бенс-Джонса меньше 3 г/л проба может быть отрицательной, но на практике это встречается крайне редко, поскольку его концентрация в моче, как правило, более значительна. На пробы с кипячением нельзя вполне полагаться. С полной достоверностью он может быть обнаружен в моче иммуно-электрофоретическим методом с использованием специфических сывороток против тяжелых и легких цепей иммуноглобулинов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.