Накопитель энергии. Накопители электрической энергии большой энергоемкости

На период отключения сети или ее поломки широко используются накопители электрической энергии для дома. Они устанавливаются, преимущественно, в частных домах и постоянно находятся в состоянии подключения. Это позволяет в течение довольно продолжительного времени получать электроэнергию, достаточную для освещения и других неотложных бытовых нужд.

Как правило, данные приборы используются при вырабатывании электричества нетрадиционными способами. В таких случаях, случаются перебои в его подаче, и накопители успешно компенсируют временное отсутствие энергии. По своей сути, это аккумуляторы, способные заряжаться и разряжаться.

Устройство накопителей

Однако, накопители электроэнергии выполняют функции, более широкие, чем у обычного аккумулятора. Они являются комплексными, интегрированными конструкциями, способными не только накапливать энергию, но и ее, делая пригодной для дальнейшего использования.

Данные устройства занимают одно из ведущих мест на рынке альтернативных энергетических приборов. Их основой служат литиевые аккумуляторы. Они состоят из зарядного устройства или контроллера заряда, преобразователя напряжения () и системы управления. Конструкция накопителей позволяет заменить большое количество оборудования для аварийных систем и в альтернативном электроснабжении. Большинство моделей рассчитаны на работу не только от стационарной сети, но и от солнечных батарей. Их средняя выходная мощность составляет 5 киловатт. Для нормальной работы прибор достаточно просто подключить к сети.

Применение накопителей электроэнергии

Чаще всего, накопители электрической энергии для дома применяются в индивидуальных домашних хозяйствах. Прежде всего, они служат основными источниками питания при аварийных ситуациях и централизованных отключениях электрических сетей. С помощью этих приборов можно добавить мощность для индивидуального энергетического хозяйства в период проседаний нагрузок в часы пик в общих распределительных сетей. Очень часто, накопитель электрической энергии, устанавливаемый дома или на даче, позволяет в значительной степени повысить качество энергоснабжения.

В настоящее время, многие потребители используют дорогостоящую бытовую аппаратуру и технику. Скачки напряжения нередко вызывают ее поломку и отказ. При использовании накопителей удается избежать большого количества проблем. Создается стабильное напряжение, обеспечивающее устойчивую работу электроприборов. Отпадает необходимость в кратковременных включениях генератора. Появляется возможность использовать тарифы с различными ставками.

Мир электроники и электричества наступает! Милые поклонникам механики устройства все чаще уступают место машинам с электромоторами и электронными схемами. Однако мир будущего станет более механическим! Так считает профессор Нурбей Гулиа. За последние десятилетия механические накопители энергии заметно прибавили в энергоемкости, и именно их, по мнению ученого, будут использовать во многих устройствах вместо привычных электрохимических аккумуляторов.

Пружина, резина, конденсатор…

Во всем мире вряд ли найдется человек, который посвятил себя разработке маховичных накопителей энергии в большей мере, чем Нурбей Гулиа. Ведь делом своей жизни изобретатель начал заниматься в 15 лет. Тогда советский школьник Нурбей решил изобрести «энергетическую капсулу» — так он назвал накопитель энергии, который должен был стать столь же энергоемким, как бак с бензином, но при этом копить в себе абсолютно безвредную для человека энергию. Первым делом любознательный школьник опробовал аккумуляторы различных типов. Одним из самых безнадежных вариантов оказался пружинный накопитель. Чтобы обычный легковой автомобиль проехал с таким аккумулятором 100 км пути, последний должен был весить 50 т.

В качестве накопителей энергии маховики применяют уже несколько столетий, однако качественный скачок в области их энергоемкости произошел только в 1960-е году, когда были созданы первые супермаховики. 1. Супермаховик в работе Супермаховик выглядит, как обычный, но внешняя его часть свита из прочной стальной ленты. Витки ленты обычно склеены между собой. 2. Супермаховик после разрыва Если разрыв обычного маховика разрушителен, то в случае супермаховика лента прижимается к корпусу и автоматически затормаживает накопитель — все совершенно безопасно.

Резиновый аккумулятор показался куда перспективней: накопитель с зарядом на 100 км мог весить «всего» 900 кг. Заинтересовавшись, Нурбей даже разработал резиноаккумулятор инновационной конструкции для привода детской коляски. Один из прохожих, очарованный самоходной коляской, посоветовал разработчику подать заявку в Комитет по изобретениям и даже помог ее составить. Так Гулиа получил первое авторское свидетельство на изобретение.

Вскоре резину сменил сжатый воздух. И опять Нурбей разработал инновационное устройство — относительно компактный гидрогазовый аккумулятор. Однако, как выяснилось в ходе работы над ним, при использовании сжатого газа энергетический «потолок» был невысок. Но изобретатель не сдался: вскоре им был построен пневмокар с подогревом воздуха горелками. Эта машина получила высокую оценку у его друзей, но по своим возможностям была еще далека от того, чтобы конкурировать с автомобилем.


Маховики на транспорте можно использовать как в качестве аккумуляторов энергии, так и в виде гироскопов. На фотографии изображен маховичный концепт-кар Ford Gyron (1961), а впервые гиро-кар был построен в 1914 году русским инженером Петром Шиловским.

Особенно тщательно будущий профессор отнесся к проработке варианта «электрической капсулы». Нурбей оценил возможности конденсаторов, электромагнитов и, разумеется, собрал всю возможную информацию об электрохимических аккумуляторах. Был даже построен электромобиль. В качестве аккумулятора для него конструктор использовал батарею МАЗа. Однако возможности тогдашних электрохимических аккумуляторов Гулиа не впечатлили, не было и оснований ожидать, что в области энергоемкости произойдет прорыв. Поэтому из всех накопителей энергии наиболее перспективными Нурбею Владимировичу показались механические аккумуляторы в виде маховиков, несмотря на то что в то время они ощутимо проигрывали электрохимическим накопителям. Тогдашние маховики, даже сделанные из самой лучшей стали, в пределе могли накопить только 30−50 кДж на 1 кг массы. Если раскручивать их быстрее, они разрывались, приводя в негодность все вокруг. Даже свинцово-кислотные аккумуляторы с энергоемкостью 64 кДж/кг смотрелись на их фоне крайне выигрышно, а щелочные аккумуляторы с плотностью энергии 110 кДж/кг были вне конкуренции. Кроме того, уже тогда существовали страшно дорогие серебряно-цинковые аккумуляторы: по удельной емкости (540 кДж/кг) они примерно соответствовали самым емким на сегодня литий-ионным аккумуляторам. Но Гулиа сделал ставку на столь далекий от совершенства маховик…

Маховик на миллион

Чем выше частота вращения маховика, тем сильнее его частицы «растягивают» диск, пытаясь его разорвать. Поскольку разрыв маховика дело страшное, конструкторам приходится закладывать высокий запас прочности. В результате на практике энергоемкость маховика раза в три ниже возможной, и в начале 1960-х годов самые совершенные маховики могли запасать всего 10−15 кДж энергии на 1 кг. Если же применить более устойчивые к разрыву материалы, прочность маховика станет выше, но такой скоростной маховик становится опасным. Получается порочный круг: прочность материала возрастает, а предельная энергоемкость увеличивается незначительно. Нурбей Гулиа поставил своей задачей вырваться из этого замкнутого круга, и в один памятный день он испытал момент внезапного прояснения. На глаза изобретателю попался тросик, свитый из проволок, — такие обычно применяют в тренажерах для подъема тяжестей. Тросик был примечателен тем, что обладал высокой прочностью и никогда не рвался сразу. Именно этих качеств и не хватало тогдашним маховикам.


Сегодня благодаря высокой энергоемкости супермаховики применяют во многих областях — от применения в спутниках связи в качестве аккумулятора энергии до использования в электростанциях для повышения их КПД. На схеме изображен маховичный накопитель, который применяют на американских электростанциях для повышения их КПД. Потери энергии в супермаховиках составляют всего 2% - это достигается, в том числе, за счет того, что он вращается в вакуумном кожухе на магнитных подшипниках.

Ученый принялся за работу: сначала поэкспериментировал с тросом, скатав из него маховик, а потом заменил проволочки тонкой стальной лентой такой же прочности — ее намотка была плотнее, а для надежности можно было склеить витки ленты между собой. Разрыв такого маховика уже не представлял опасности: при превышении предельной скорости первой должна была оторваться наиболее нагруженная внешняя лента. Она прижимается к корпусу и автоматически затормаживает маховик — никаких несчастных случаев, а оторванную ленту можно приклеить снова.

Первое испытание, когда ленточный маховик Гулиа раскручивался от скоростного электромотора пылесоса, прошло успешно. Маховик вышел на максимальную частоту вращения без разрыва. А затем, когда ученому удалось испытать этот маховик на специальном разгонном стенде, выяснилось, что разрыв наступал только при скорости обода почти 500 м/c или плотности энергии около 100 кДж/кг. Изобретение Гулиа в несколько раз превзошло по плотности энергии самые передовые на то время маховики и оставило позади свинцово-кислотные аккумуляторы.


Это возможно первый в мире гибридный автомобиль. Его передние колеса приводились от ДВС, тогда как задние от вариатора и маховика. Такой опытный образец оказался вдвое экономичней, чем УАЗ-450Д.

В мае 1964 года Гулиа первым в мире подал заявку на изобретение супермаховика, но из-за бюрократизма советской патентной системы получил необходимый документ только через 20 лет, когда срок его действия уже истек. Но приоритет изобретения за СССР сохранился. Жил бы ученый на Западе — давно бы стал мультимиллионером.

Через какое-то время после Гулиа супермаховик изобрели и на Западе, и спустя годы ему находят множество применений. В разных странах разрабатываются проекты маховичных машин. Американские специалисты создают беспилотный вертолет, в котором вместо двигателя используют супермаховики. Отправляют супермаховики и в космос. Там для них особенно благоприятная среда: в космическом вакууме нет аэродинамического сопротивления, а невесомость устраняет нагрузки на подшипники. Поэтому на некоторых спутниках связи применяются супермаховичные накопители — они долговечнее электрохимических аккумуляторов и могут долгое время снабжать аппаратуру спутника энергией. Недавно в США стали рассматривать возможность применения супермаховиков в качестве источников бесперебойного питания для зданий. Там уже работают электростанции, которые во время пика потребления энергии увеличивают мощность за счет маховичных накопителей, а при спаде, обычно в ночное время, направляют избытки энергии на раскручивание маховиков. В итоге у электростанции значительно повышается КПД работы. Кроме того, потери энергии в супермаховиках составляют всего 2% - это меньше, чем у любых других накопителей энергии.


Профессор Гулиа тоже времени зря не терял: создал очень удобную маховичную дрель, разработал первый в мире гибридный маховичный автомобиль на базе УАЗ-450Д — он оказался вдвое экономичней обычной машины. Но главное — профессор постоянно совершенствует разные элементы своей маховичной концепции, чтобы сделать ее по-настоящему конкурентоспособной.

Чудо-махомобили

Можно ли вывести супермаховик на уровень самых емких аккумуляторов? Оказывается, это не проблема. Если вместо стали использовать более прочные материалы, то пропорционально вырастет и энергоемкость. Причем, в отличие от электрохимических аккумуляторов, здесь практически нет потолка.

Супермаховик из кевлара на испытаниях при той же массе накапливал в четыре раза больше энергии, чем стальной. Супермаховик, навитый из углеволокна, может в 20−30 раз превзойти стальной по плотности энергии, а если использовать для его изготовления, например, алмазное волокно, то накопитель приобретет фантастическую энергоемкость — 15 МДж/кг. Но и это не предел: сегодня с помощью нанотехнологий на основе углерода создаются волокна фантастической прочности. «Если из такого материала навить супермаховик, — рассказывает профессор, — плотность энергии может достичь 2500−3500 МДж/кг. А значит, 150-килограммовый супермаховик из такого материала способен обеспечить легковому автомобилю пробег в два с лишним миллиона километров с одной прокрутки — больше, чем может выдержать шасси машины».


Если объединить в одну схему супермаховик и супервариатор расход привычного автомобиля можно снизить ниже 2 л/100 км, считает Нурбей Гулиа. На фото приведена схема работы маховичной машины на топливных элементах, справа автомобиля с ДВС.

За счет того что супермаховик вращается в вакууме, а его ось закреплена в магнитной подвеске, сопротивление при вращении оказывается минимальным. Возможно, такой супермаховик может крутиться до остановки многие месяцы. Однако машина, способная работать в течение всего срока службы без заправок, пока еще не изобретена. Мощности современных электростанций определенно не хватит для зарядки таких серийных чудо-махомобилей.

Но именно автотранспорт, считает профессор, самая подходящая сфера применения супермаховиков. И показатели машин проекта Гулиа, на которых он планирует использовать супермаховики, не менее удивительные. По оценке ученого, «здоровый» расход топлива у бензинового автомобиля должен составлять примерно 1,5 л на 100 км, а у дизельного — 1,2 л.

Как такое возможно? «В энергетике есть неписаный закон: при одинаковых капиталовложениях всегда более экономичен привод, в котором нет преобразований видов и форм энергии, — поясняет профессор. — Двигатель выделяет энергию в виде вращения, и ведущие колеса автомобиля потребляют эту энергию тоже в виде вращения. Значит, не надо преобразовывать энергию двигателя в электрическую и обратно, достаточно передавать ее от двигателя к колесам через механический привод».


Таким образом, механический гибрид оказывается максимально энергосберегающим и, как уверяет ученый, в условиях города снижает расход топлива в три раза! Применение супермаховика, который запасает огромное количество энергии от двигателя, а затем практически без потерь отправляет ее на колеса через супервариатор (см. «ПМ», № 3"2006), позволяет снизить размер и мощность двигателя. Двигатель же в проекте ученого работает только в оптимальном режиме, когда его КПД наиболее высок, поэтому-то «суперавтомобиль» Гулиа столь экономичен. Имеется у профессора и проект использования топливных элементов с супермаховиком. У топливных элементов КПД в пределе может быть почти вдвое выше, чем у ДВС, и составляет около 70%.

«Но почему же при всех достоинствах такой схемы она пока не используется на автомобилях?» — задаем мы очевидный вопрос. «Для такой машины был необходим супервариатор, а он появился сравнительно недавно и сейчас только начинает производиться, — объясняет профессор Гулиа. — Так что такой автомобиль на подходе». Нашему журналу приятно сознавать, что если такой автомобиль появится, то в этом будет и наша заслуга. После того как в «Популярной механике» появилась статья о супервариаторе Гулиа, этим проектом сразу заинтересовались производители приводной техники, и сейчас профессор занимается созданием и совершенствованием своего супервариатора. А значит, стоит надеяться, что ждать суперавтомобиля осталось недолго…

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопление потенциальной энергии

Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество. Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий. К сожалению, такие устройства обладают низкой удельной энергоемкостью.

Механические накопители кинетической энергии

В этих хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.

В колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.

Накопители, использующие энергию гироскопа

Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами. Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика. А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство. При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине. В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.

Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.

Механические накопители, использующие силы упругости

Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.

Механические накопители, использующие энергию пружины

Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий. Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается. В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

Функции пружины могут выполнять любые упругие элементы. например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.

Механические накопители, использующие энергию сжатых газов

В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон. По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор. Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры - и десятки лет.

Накопление тепловой энергии

Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.

Накопление за счет теплоемкости

Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста. Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии. Но время хранения не превышает нескольких суток.

Аккумулирование электрической энергии

Электрическая энергия - это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии - это конденсаторы, ионисторы, аккумуляторы.

Конденсаторы

Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии - десятки миллиардов в секунду. Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы.Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры. Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

Конденсаторы делятся на два класса - полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.

Как накопители энергии конденсаторы - не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.

Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.

Ионисторы

Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии - до нескольких недель. Ионисторы очень чувствительны к температуре.

Силовые аккумуляторы

Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового. Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи. Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.

Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.

Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора. В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а на запуск двигателя возрастает. Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.

Аккумуляторы для маломощных устройств

Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше. Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах. Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.

Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность. В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора. Потушить пожар довольно трудно из-за высокой активности лития.

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона - это компактный помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки. В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для доматакже необходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников. Выходная мощность в среднем составляет 5 кВт.

Накопители химической энергии

Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах. Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах. Компоненты для низкотемпературных реакций обычно находятся в одной емкости.

Накопление энергии наработкой топлива

Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»). Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте. Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.

Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.

Безтопливное химическое накопление энергии

В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, при нагреве переходит в негашеное состояние. При "разрядке" запасенная энергия выделяется в виде тепла и газа. Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов. Поэтому используемое оборудование гораздо сложнее и дороже.

Производство энергии за последний век нанесло колоссальный вред окружающей среде нашей планеты. Использование ископаемых источников, их сжигание и выброс отходов в атмосферу - одна из причин смены климата на Земле.

Презентация накопителя энергии для дома Tesla Energy Powerwall 2.0 на выставке в Хауторн (Hawthorne), Калифорния, 30 апреля 2015 года

Когда ситуация стала критической, люди начали задумываться об альтернативных источниках энергии. Кто-то задумывается, а кто-то делает. Накопитель электроэнергии PowerWall 2 0 - один из примеров действий.

Альтернативные источники энергии

Уже давно человечеством были придуманы солнечные батареи и ветряки. Они преобразуют солнечные лучи и ветер в электроэнергию, которую используют люди для своих повседневных нужд. Солнечные батареи применяют в многочисленных сферах жизни человечества: в космосе, в быту, на производстве.

Принцип организации построения электросети от солнечных панелей и накопителя для дома Tesla PowerWall 2.0

В странах Скандинавии люди устанавливают батареи на крыши своих домов, расходуют электроэнергию, а остатки продают соседям. У них получилось не только отказаться от традиционных источников электричества, но и заработать небольшую сумму денег на свои расходы.

Американская компания Tesla пошла дальше и предложила миру PowerPack - солнечную батарею нового поколения. Она представляет собой целую крышу, а не отдельные маленькие солнечные батареи. Представлено четыре вида такой конструкции, что позволяет подобрать крышу под архитектуру своего дома. Такая технология способа брать на себя все расходы электроэнергии среднестатистической семьи.

Идея Tesla состоит в том, чтобы накопленной энергией заряжать автомобиль или автомобилем запитывать дом электричеством

Куда девать лишнюю энергию? Не всегда получается расходовать всё электричество, которое человек получается от ветряков и солнечных батарей. Отличным вариантом станет накопитель энергии.

PowerWall от Tesla

Илон Маск высказывается об идее создания новой эры «зелёной энергетики», полного отказа от производства электричества на земных ископаемых. Шагом вперёд стал выпуск домашнего накопителя энергии PowerWall, который стоит применять при наличии ветряков или солнечных батарей, в частности, PowerPack.

Илон Маск презентует Powerwall на 10 кВт

Использование такой технологии - инвестиция в будущее и снижение расходов на электроэнергию. В США, когда люди возвращаются с работы, вырастают тарифы на потребление энергии. Использование PowerWall позволяет накопить электричество от альтернативных источников в течение дня, а затем потреблять её в вечернее время суток.

Автозаправочная станция для машин Tesla будет доступна по всему миру

Накопитель энергии может стать запасным источником питания на случай, если будет отключено центрально энергоснабжение. Полного запаса ёмкости хватит на обеспечение дома в течение нескольких часов. Излишки можно продавать соседям.

Доступно две версии: PowerWall и PowerWall 2.0. Отличаются они запасом энергии. Первая версия имеет два варианта: на 7 кВч ($3000) и 10 кВч ($3500). Вторая версия предлагает ёмкость на 14 кВч за 5,5 тысяч долларов.

Система из солнечных панелей и Tesla PowerWall, смонтированной на фасаде дома

Использование этой новации возможно и на производстве. Два, три и более аккумулятора можно объединить в одну систему и увеличить запас резервной энергии в разы. Всего можно соединять до 9 накопителей Tesla. Маленькие производства могут работать только на альтернативной энергии благодаря технологии американской компании.

Практическую пользу дополняет красивый внешний вид. Аккумулятор Tesla не только не испортит интерьер любого помещения, но в некоторых случаях сможет его дополнить. Размеры у него небольшие, много места он не занимает.

PowerWall не портит внешний вид, и имеет влагозащищенный IP65 корпус и может размещаться на стене дома для дозарядки автомобиля

Внедрение новации может статьи большим шагом в будущее, в возможности скоро отказа от использования традиционных источников энергии. Это сделает окружающую среду чище и позволит нормализовать проблемы с изменением климата.

Альтернатива для России

Техника Tesla на российском рынке не имеет особого распространения, возможно дело в высокой стоимости оборудования. Подсчитаем, цена в США за единицу оборудования составляет $5500 для PowerWall 2.0 на 14 кВт*ч. Инсталляция стоит $1500, при увеличении количества оборудования цена увеличивается на $100.

С инсталляцией стоимость PowerWall 2.0 составит $7000/1шт. При депозите в $500 граждане могут стать обладателями накопителя.

При наличии солнечных модулей на 4 кВт дом не зависит от городской энергии.

При стоимости солнечных панелей порядка $200/шт за 250 Вт, нужно 16 панелей и один инвертор, чтобы получить 100% энергонезависимый дом, который питается от солнечной энергии и Powerwall. Это условие справедливо при потреблении дома 10 кВт/день (400 Вт/час).

Стоимость энергии в США 10 руб/день, 2 руб/ночь, стоимость оборудования будет составлять порядка $14000. Банки дают кредиты при взносе 10% от стоимости товара под 2-3% годовых, таким образом, за $140 долларов в месяц потребитель сможет заряжать машину и обеспечивать энергией дом.

В России все печальнее. Стоимость электроэнергии составляет 3-6 руб/кВт. Стоимость оборудования пройдя через таможню будет составлять на 54% больше. Только накопитель PowerWall 2.0 увеличится в стоимости до $10000 без учета монтажа и доставки до объекта.

Компании, для которых вопрос в обеспечении резервным источником питания является приоритетным обязаны потратить значительные средства на покупку оборудования либо создавать альтернативные сборки. Поэтому когда до нас дойдут накопители энергии - вопрос без ответа. Основным направлением компании Илона Маска является рынок энергетики США.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.